Home
Class 14
MATHS
If f(s) =(b^(s) +b^(-s))//2, where b gt ...

If `f(s) =(b^(s) +b^(-s))//2`, where `b gt 0`. Find `f(s+t) +f(s-t)`.

A

`f(s) -f(t)`

B

`2f(s).f(t)`

C

`4f(s).f(t)`

D

`f(s)+f(t)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f(s+t) + f(s-t) \) given the function \( f(s) = \frac{b^s + b^{-s}}{2} \). ### Step-by-Step Solution: 1. **Calculate \( f(s+t) \)**: \[ f(s+t) = \frac{b^{s+t} + b^{-(s+t)}}{2} \] This can be rewritten using the properties of exponents: \[ f(s+t) = \frac{b^s \cdot b^t + \frac{1}{b^s \cdot b^t}}{2} = \frac{b^s b^t + \frac{1}{b^s b^t}}{2} \] 2. **Calculate \( f(s-t) \)**: \[ f(s-t) = \frac{b^{s-t} + b^{-(s-t)}}{2} \] Similarly, this can be rewritten: \[ f(s-t) = \frac{b^s \cdot b^{-t} + \frac{1}{b^s \cdot b^{-t}}}{2} = \frac{b^s b^{-t} + \frac{1}{b^s b^{-t}}}{2} \] 3. **Add \( f(s+t) \) and \( f(s-t) \)**: Now we need to add both results: \[ f(s+t) + f(s-t) = \frac{b^s b^t + \frac{1}{b^s b^t}}{2} + \frac{b^s b^{-t} + \frac{1}{b^s b^{-t}}}{2} \] Combine the fractions: \[ = \frac{1}{2} \left( b^s b^t + \frac{1}{b^s b^t} + b^s b^{-t} + \frac{1}{b^s b^{-t}} \right) \] 4. **Simplify the expression**: Notice that \( b^s b^t = b^{s+t} \) and \( b^s b^{-t} = b^{s-t} \): \[ = \frac{1}{2} \left( b^{s+t} + b^{s-t} + \frac{1}{b^{s+t}} + \frac{1}{b^{s-t}} \right) \] 5. **Final Result**: Thus, we have: \[ f(s+t) + f(s-t) = \frac{1}{2} \left( b^{s+t} + b^{s-t} + \frac{1}{b^{s+t}} + \frac{1}{b^{s-t}} \right) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|11 Videos
  • COORDINATE GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos
  • Fundamentals

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos