Home
Class 14
MATHS
(8x^(2) + 16x - 51)/((2x-3)(x+4)) gt 3, ...

`(8x^(2) + 16x - 51)/((2x-3)(x+4)) gt 3`, if x satisfies

A

`x lt - 4`

B

`-3 lt x lt 3//2`

C

`x gt 5//2`

D

All of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \((8x^{2} + 16x - 51)/((2x-3)(x+4)) > 3\), we will follow these steps: ### Step 1: Rearrange the Inequality We start by moving all terms to one side of the inequality: \[ \frac{8x^{2} + 16x - 51}{(2x-3)(x+4)} - 3 > 0 \] ### Step 2: Combine the Terms To combine the terms, we need a common denominator: \[ \frac{8x^{2} + 16x - 51 - 3(2x-3)(x+4)}{(2x-3)(x+4)} > 0 \] ### Step 3: Expand the Denominator Now, we expand \(3(2x-3)(x+4)\): \[ 3(2x^2 + 8x - 3x - 12) = 3(2x^2 + 5x - 12) = 6x^2 + 15x - 36 \] ### Step 4: Substitute Back Now substitute back into the inequality: \[ \frac{8x^{2} + 16x - 51 - (6x^{2} + 15x - 36)}{(2x-3)(x+4)} > 0 \] ### Step 5: Simplify the Numerator Now simplify the numerator: \[ 8x^{2} + 16x - 51 - 6x^{2} - 15x + 36 = 2x^{2} + x - 15 \] ### Step 6: Factor the Quadratic Next, we need to factor \(2x^{2} + x - 15\). We look for two numbers that multiply to \(2 \times -15 = -30\) and add to \(1\). These numbers are \(6\) and \(-5\). Thus, we can factor: \[ 2x^{2} + 6x - 5x - 15 = (2x - 5)(x + 3) \] ### Step 7: Set Up the Inequality Now we can rewrite the inequality: \[ \frac{(2x - 5)(x + 3)}{(2x - 3)(x + 4)} > 0 \] ### Step 8: Find Critical Points The critical points are found by setting the numerator and denominator to zero: 1. \(2x - 5 = 0 \Rightarrow x = \frac{5}{2}\) 2. \(x + 3 = 0 \Rightarrow x = -3\) 3. \(2x - 3 = 0 \Rightarrow x = \frac{3}{2}\) 4. \(x + 4 = 0 \Rightarrow x = -4\) ### Step 9: Test Intervals We will test the intervals defined by the critical points: \((-∞, -4)\), \((-4, -3)\), \((-3, \frac{3}{2})\), \((\frac{3}{2}, \frac{5}{2})\), and \((\frac{5}{2}, ∞)\). 1. **Interval \((-∞, -4)\)**: Choose \(x = -5\) → positive. 2. **Interval \((-4, -3)\)**: Choose \(x = -3.5\) → negative. 3. **Interval \((-3, \frac{3}{2})\)**: Choose \(x = 0\) → negative. 4. **Interval \((\frac{3}{2}, \frac{5}{2})\)**: Choose \(x = 2\) → positive. 5. **Interval \((\frac{5}{2}, ∞)\)**: Choose \(x = 3\) → positive. ### Step 10: Write the Solution The solution to the inequality is where the expression is positive: \[ x \in (-∞, -4) \cup \left(\frac{3}{2}, \frac{5}{2}\right) \] ### Final Step: Check the Options Now we check the options provided in the question against our solution. The only valid option is \(x < -4\).
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    DISHA PUBLICATION|Exercise Practice Exercises (Foundation Level)|14 Videos
  • INEQUALITIES

    DISHA PUBLICATION|Exercise Practice Exercises (Standard Level)|19 Videos
  • GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF |3 Videos
  • INTEREST

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos

Similar Questions

Explore conceptually related problems

Solve(8x^(2)+16x-51)/(2x^(2)+5x-12)>3

(7x-5)/(8x+3)>4

The least integer x for wich the inequality ((x-3)^(2))/(x^(2)+8x-22)lt0 is satisfied, is

(2x-3)/(4)+9>=3+(4x)/(3)

(5-2x) (3x + 4) (x-4)> = 0

The HCF of 8x^(4) - 16x^(3) - 40x^(2) + 48x and 16x^(5) + 64x^(4) + 80x^(3) + 32x^(2) is

Evalutate lim_(x to 4)((x^(2) - x - 12)^(18))/((x^(3) - 8x^(2) + 16x)^(9))