Home
Class 14
MATHS
|2x - 3| lt |x+5|, then x belongs to...

`|2x - 3| lt |x+5|`, then x belongs to

A

(-3, 5)

B

(5, 9)

C

`(-(2)/(3), 8)`

D

`(-8, (2)/(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( |2x - 3| < |x + 5| \), we will follow these steps: ### Step 1: Understand the Absolute Value Inequality The inequality \( |A| < |B| \) can be interpreted as: - \( -B < A < B \) Thus, we can break down our inequality into two cases: 1. \( -|x + 5| < 2x - 3 < |x + 5| \) ### Step 2: Solve the Two Cases We will solve the two inequalities separately. #### Case 1: \( 2x - 3 < x + 5 \) 1. Rearranging gives: \[ 2x - x < 5 + 3 \] \[ x < 8 \] #### Case 2: \( 2x - 3 > - (x + 5) \) 1. Rearranging gives: \[ 2x - 3 > -x - 5 \] \[ 2x + x > -5 + 3 \] \[ 3x > -2 \] \[ x > -\frac{2}{3} \] ### Step 3: Combine the Results From the two cases, we have: 1. \( x < 8 \) 2. \( x > -\frac{2}{3} \) Thus, combining these results, we get: \[ -\frac{2}{3} < x < 8 \] ### Final Answer Therefore, the solution to the inequality \( |2x - 3| < |x + 5| \) is: \[ x \in \left(-\frac{2}{3}, 8\right) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|11 Videos
  • GEOMETRY

    DISHA PUBLICATION|Exercise TEST YOURSELF |3 Videos
  • INTEREST

    DISHA PUBLICATION|Exercise Test Yourself|15 Videos

Similar Questions

Explore conceptually related problems

|x+(2)/(x)|<3 then x belongs to

Solve |2x -3| lt 5

Knowledge Check

  • If |3x + 2| lt 1 , then x belongs to the interval

    A
    `(-1, -1//3)`
    B
    `[-1, -1//3]`
    C
    `(-oo, -1)`
    D
    `(-1//3, oo)`
  • If log_(3)x-log_(x)27 lt 2 , then x belongs to the interval

    A
    `(1//3,27)`
    B
    `(1//27,3)`
    C
    `(1//9,9)`
    D
    None of these
  • If |2x-3| lt|x+5|, then x lies in the interval

    A
    `(-3,5)`
    B
    (5,9)
    C
    `((-2)/3,8)`
    D
    `(-8,2/3)`
  • Similar Questions

    Explore conceptually related problems

    If (3(x-2))/(5)gt=(5(2-x))/(3) , then x belongs to the interval

    If log_(12) (log_(7) x) lt 0 , then x belong to ______.

    (x-3)/(x-5) > 0 then x belongs to -

    if (5x)/(4) + (3x)/(8) gt (39)/(8) " and " (2x-1)/(12)-(x-1)/(3)lt(3x+1)/(4) , then x belongs to the internal

    If log_(9)[(log_(8)x)]lt0 , then x belongs to ______.