Home
Class 14
MATHS
If log(10)2=0.3010, then the value of lo...

If `log_(10)2=0.3010`, then the value of `log_(10)80` is

A

A)`1.9030`

B

B)`1.6020`

C

C)`3.9030`

D

D)`2.9030`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_{10} 80 \) given that \( \log_{10} 2 = 0.3010 \), we can follow these steps: ### Step 1: Rewrite \( \log_{10} 80 \) We can express 80 as a product of its factors: \[ 80 = 8 \times 10 \] Thus, we can write: \[ \log_{10} 80 = \log_{10} (8 \times 10) \] ### Step 2: Use the Product Rule of Logarithms According to the product rule of logarithms, \( \log_b (xy) = \log_b x + \log_b y \): \[ \log_{10} 80 = \log_{10} 8 + \log_{10} 10 \] ### Step 3: Simplify \( \log_{10} 10 \) We know that \( \log_{10} 10 = 1 \): \[ \log_{10} 80 = \log_{10} 8 + 1 \] ### Step 4: Rewrite \( \log_{10} 8 \) Next, we can express 8 in terms of powers of 2: \[ 8 = 2^3 \] Thus, we can write: \[ \log_{10} 8 = \log_{10} (2^3) \] ### Step 5: Use the Power Rule of Logarithms According to the power rule of logarithms, \( \log_b (x^n) = n \cdot \log_b x \): \[ \log_{10} 8 = 3 \cdot \log_{10} 2 \] ### Step 6: Substitute the Known Value Now, we can substitute the value of \( \log_{10} 2 \): \[ \log_{10} 8 = 3 \cdot 0.3010 = 0.9030 \] ### Step 7: Combine the Results Now, we substitute this back into our equation for \( \log_{10} 80 \): \[ \log_{10} 80 = 0.9030 + 1 = 1.9030 \] ### Final Answer Thus, the value of \( \log_{10} 80 \) is: \[ \log_{10} 80 = 1.9030 \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

If log_(10)2=0.30103, find the value of log_(10)50.

The value of log_(10)0.0001 is

Knowledge Check

  • If log_(10) 2=0.301 then the value of log_(10) 50 is

    A
    0.699
    B
    1.301
    C
    1.699
    D
    2.301
  • Given that log_(10) 2 =0.3010 then the value of log_(10) 5 is

    A
    0.3241
    B
    0.6911
    C
    0.699
    D
    0.7525
  • If log_(10)2 = 0.3010 and log_(10)7 = 0.8451, then the value of log_(10)2.8 is :

    A
    A)0.4471
    B
    B)1.4471
    C
    C)2.4471
    D
    D)3.4471
  • Similar Questions

    Explore conceptually related problems

    If log_(10)2=0.3010 the value of log_(10)80 is a. 1.6020 b.1.9030 c.3.9030 d.none of these

    If log_(10)2=0.3010, the value of log_(10)5 is a.0.3241 b.0.6911 c.0.6990 d.0.7525

    If log_(10)2=0.3010 and log_(10)7=0.8451 , then the value of log_(10) 2.8 is a. 0. 4471 b. 1. 4471 c. 2. 4471 d. none of these

    If log_(10)2=0.3010, the value of log_(10)25 is a.0.6020 b.1.2040 c.1.3980 d.1.5050

    the value of log_(10) 0.000001 is