Home
Class 14
MATHS
Find the value of log(3^(2))5^(4)xxlog(5...

Find the value of `log_(3^(2))5^(4)xxlog_(5^(2))3^(4)` .

A

A)5

B

B)3

C

C)4

D

D)2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log_{3^2}(5^4) \times \log_{5^2}(3^4) \), we can follow these steps: ### Step 1: Rewrite the logarithms using the change of base formula Using the property \( \log_a(b) = \frac{1}{\log_b(a)} \), we can rewrite the logarithms: \[ \log_{3^2}(5^4) = \frac{\log_{5^2}(3^4)}{1} \] Thus, we have: \[ \log_{3^2}(5^4) = \frac{1}{\log_{5^2}(3^4)} \] ### Step 2: Substitute back into the expression Now substituting this back into the original expression: \[ \log_{3^2}(5^4) \times \log_{5^2}(3^4) = \frac{1}{\log_{5^2}(3^4)} \times \log_{5^2}(3^4) \] ### Step 3: Simplify the expression The expression simplifies to: \[ \frac{\log_{5^2}(3^4)}{\log_{5^2}(3^4)} = 1 \] ### Step 4: Final multiplication Now, we multiply by the factor we initially separated out: \[ 1 \times 1 = 1 \] ### Conclusion Thus, the value of \( \log_{3^2}(5^4) \times \log_{5^2}(3^4) \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

Find the value of 3^(2+log_3 5)

Find the value of 49^(1-log_(7)2)+5^(-log_(5)4)

Find the value of 49^((1-log_(7)(2)))+5^(-log_(5)(4)) is

Find the value of ((2)/(3))^(-4//5) .

Find the value of 5!+4!-3!-2!

Find the value of S=log_(2)4+log_(8)2+2^(log_(2)3)+3^(log_(5)4)-4^(log_(5)3)

Find the value of (log_(3)4)(log_(4)5)(log_(5)6)(log_(6)7)(log_(7)8)(log_(8)9)

Find the value of 81^((1/log_(5)3))+(27^(log_(9)36))+3((4)/(log_(9)9))

DISHA PUBLICATION-LOGARITHMS-Practice Exercises (Standard Level)
  1. If log2=0.30103, then the number of digits in 4^(50) is

    Text Solution

    |

  2. Number of digits in 60^(12)

    Text Solution

    |

  3. Find the value of log(3^(2))5^(4)xxlog(5^(2))3^(4) .

    Text Solution

    |

  4. If a=b^(x),b=c^(y) and c=a^(z), then the value of xyz is equal to (a...

    Text Solution

    |

  5. If log(7)log(5)(sqrt(x)+5+sqrt(x))=0, find the value of x.

    Text Solution

    |

  6. If log(3)[log(3)[log(3)x]]=log(3)3, then what is the value of x ?

    Text Solution

    |

  7. What is log(a+sqrt(a^(2)+1))+log((1)/(a+sqrt(a^(2)+1))) is equal to ?

    Text Solution

    |

  8. (1)/((log(a)bc)+1)+(1)/((log(b)ac)+1)+(1)/((log(c)ab)+1) is equal to

    Text Solution

    |

  9. If p = log(3)5 and q= log(17) 25 which one of the following is correct...

    Text Solution

    |

  10. If log(10)x=a,log(10)y=b" and "log(10)z=c, then antilog (pa+qb-rc)=?

    Text Solution

    |

  11. If a, b, c are three consecutive odd Integers, then the line ax - by +...

    Text Solution

    |

  12. Find the value of (7^(3))^(-2log(7)8)

    Text Solution

    |

  13. Find the values of x satisfying log(x^(2)+6x+8)log(2x^(2)+2x+3)(x^(2)-...

    Text Solution

    |

  14. If log(0.3)(x-1)ltlog(0.09)(x-1), then x lies in the interval

    Text Solution

    |

  15. If (log(3)x)^(2)+log(3)xlt2, then which one of the following is correc...

    Text Solution

    |

  16. If x + log(10) (1 + 2^(x)) = x log(10) 5 + log(10)6 then x is equal to

    Text Solution

    |

  17. How many values of (xgt1) satisfy the following equation: log(2)xxl...

    Text Solution

    |

  18. The equation log(5)x+(log((x^(2)+3))25)^(-1)=log(25)10 has

    Text Solution

    |

  19. If log(10)x-log(10)sqrt(x)=2log(x)10, then a possible value of x is ...

    Text Solution

    |

  20. What is the value of (log(27)9xxlog(16)64)/(log(4)sqrt(2)) ?

    Text Solution

    |