Home
Class 14
MATHS
How many values of (xgt1) satisfy the fo...

How many values of `(xgt1)` satisfy the following equation:
`log_(2)xxlog_(4)xxlog_(6)x=log_(2)x.log_(4)x+log_(2)x.log_(6)x+log_(4)x.log_(6)x` ?

A

0

B

1

C

2

D

More than 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_2 x \cdot \log_4 x \cdot \log_6 x = \log_2 x \cdot \log_4 x + \log_2 x \cdot \log_6 x + \log_4 x \cdot \log_6 x \), we will follow these steps: ### Step 1: Rewrite the logarithms We can express \( \log_4 x \) and \( \log_6 x \) in terms of \( \log_2 x \): \[ \log_4 x = \frac{\log_2 x}{\log_2 4} = \frac{\log_2 x}{2} \] \[ \log_6 x = \frac{\log_2 x}{\log_2 6} \] ### Step 2: Substitute into the equation Substituting these into the original equation gives: \[ \log_2 x \cdot \left(\frac{\log_2 x}{2}\right) \cdot \left(\frac{\log_2 x}{\log_2 6}\right) = \log_2 x \cdot \left(\frac{\log_2 x}{2}\right) + \log_2 x \cdot \left(\frac{\log_2 x}{\log_2 6}\right) + \left(\frac{\log_2 x}{2}\right) \cdot \left(\frac{\log_2 x}{\log_2 6}\right) \] ### Step 3: Simplify both sides The left-hand side simplifies to: \[ \frac{(\log_2 x)^3}{2 \log_2 6} \] The right-hand side simplifies to: \[ \frac{(\log_2 x)^2}{2} + \frac{(\log_2 x)^2}{\log_2 6} + \frac{(\log_2 x)^2}{2 \log_2 6} \] Factoring out \( \log_2 x \) gives: \[ \log_2 x \left(\frac{\log_2 x}{2} + \frac{\log_2 x}{\log_2 6} + \frac{\log_2 x}{2 \log_2 6}\right) \] ### Step 4: Set the equation Now we can set the two sides equal: \[ \frac{(\log_2 x)^3}{2 \log_2 6} = \log_2 x \left(\frac{\log_2 x}{2} + \frac{\log_2 x}{\log_2 6} + \frac{\log_2 x}{2 \log_2 6}\right) \] ### Step 5: Cancel \( \log_2 x \) (assuming \( \log_2 x \neq 0 \)) Dividing both sides by \( \log_2 x \) gives: \[ \frac{(\log_2 x)^2}{2 \log_2 6} = \frac{\log_2 x}{2} + \frac{\log_2 x}{\log_2 6} + \frac{\log_2 x}{2 \log_2 6} \] ### Step 6: Rearranging the equation Multiplying through by \( 2 \log_2 6 \) to eliminate the fraction: \[ (\log_2 x)^2 = \log_2 6 \cdot \log_2 x + 2 \log_2 x + \log_2 x \] This simplifies to: \[ (\log_2 x)^2 - (3 + \log_2 6) \log_2 x = 0 \] ### Step 7: Factor the quadratic Factoring gives: \[ \log_2 x \left(\log_2 x - (3 + \log_2 6)\right) = 0 \] This gives two solutions: 1. \( \log_2 x = 0 \) (not valid since \( x > 1 \)) 2. \( \log_2 x = 3 + \log_2 6 \) ### Step 8: Solve for \( x \) From the second equation: \[ \log_2 x = \log_2 (6 \cdot 8) = \log_2 48 \] Thus, \( x = 48 \). ### Conclusion Since \( x = 48 \) is the only solution greater than 1, the answer is: **1 value of \( x \) satisfies the equation.**
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

Solve : log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x .

log_(4)(log_(2)x)+log_(2)(log_(4)x)=2

log_(4)(log_(2)x)+log_(2)(log_(4)x)=2

The sum of solutions of the equation log_(2)x log_(4)x log_(6)x=log_(2)x*log_(4)x+log_(4)x log_(6)x+log_(6)x*log_(2)x is equal to

Find positive no.x which satisfy the equation log_(3)x*log_(4)x(log_(5)x-1)=log_(5)x*(log_(4)x+log_(3)x)

Find the square of the sum of the roots of the equation log_(3)x*log_(4)x*log_(5)x=log_(3)x*log_(4)x+log_(5)x*log_(3)x

The value(s) of x satisfying the equation log_(2)x+2log_(2)x-log_(2)(x-1)=3, is

The value of x :satisfying the equation log_(4)(2log_(2)x)+log_(2)(2log_(4)x)=2 is

Solve the equation: log_(2)x+log_(4)(x+2)=2

DISHA PUBLICATION-LOGARITHMS-Practice Exercises (Standard Level)
  1. If (log(3)x)^(2)+log(3)xlt2, then which one of the following is correc...

    Text Solution

    |

  2. If x + log(10) (1 + 2^(x)) = x log(10) 5 + log(10)6 then x is equal to

    Text Solution

    |

  3. How many values of (xgt1) satisfy the following equation: log(2)xxl...

    Text Solution

    |

  4. The equation log(5)x+(log((x^(2)+3))25)^(-1)=log(25)10 has

    Text Solution

    |

  5. If log(10)x-log(10)sqrt(x)=2log(x)10, then a possible value of x is ...

    Text Solution

    |

  6. What is the value of (log(27)9xxlog(16)64)/(log(4)sqrt(2)) ?

    Text Solution

    |

  7. If (log(x)x)(log(3)2x)(log(2x)y)=log(x^(x^(2)), then what is the val...

    Text Solution

    |

  8. What is the value of log(10)(9/8)-log(10)((27)/(32))+log(10)(3/4) ?

    Text Solution

    |

  9. The value of 25^((-1//4log(5)25)) is equal to

    Text Solution

    |

  10. If log(10)x,log(10)y,log(10) z are in AP then x, y, z are in

    Text Solution

    |

  11. Find the value of (logsqrt(27)+logsqrt(8)-logsqrt(125))/(log6-log5)

    Text Solution

    |

  12. Find the value of x and y respectively for log(10)(x^(2)y^(3))=7 and l...

    Text Solution

    |

  13. Arrange the following in an ascending order A=log(7)2401,B=log(7)sqrt(...

    Text Solution

    |

  14. If 3log((3x^(2)))27-2log((3x))9=0, then what is the value of x?

    Text Solution

    |

  15. If log(k)N=6, and log(25k)(8N)=3, then k is

    Text Solution

    |

  16. What is the value of log(3)2,log(4)3.log(5)4. . .log(16)15 ?

    Text Solution

    |

  17. Find the value of x, if log(2x-3)-log(11.66-x)=1+log3

    Text Solution

    |

  18. If log(4)5=a and log(5)6=b then what is the value of log(3)2

    Text Solution

    |

  19. What is the value of x if log(3)x+log(9)x+log(27)x+log(81)x=(25)/(4)?

    Text Solution

    |

  20. What is the value of log(32)27xxlog(243)8 ?

    Text Solution

    |