Home
Class 14
MATHS
The value of 25^((-1//4log(5)25)) is ...

The value of `25^((-1//4log_(5)25))` is equal to

A

`1/5`

B

`-1/25`

C

`-25`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 25^{\left(-\frac{1}{4} \log_{5} 25\right)} \), we will follow these steps: ### Step 1: Rewrite the base We know that \( 25 \) can be expressed as \( 5^2 \). Therefore, we can rewrite the expression as: \[ (5^2)^{\left(-\frac{1}{4} \log_{5} 25\right)} \] ### Step 2: Apply the power of a power property Using the property of exponents \((a^m)^n = a^{m \cdot n}\), we can simplify the expression: \[ 5^{2 \cdot \left(-\frac{1}{4} \log_{5} 25\right)} = 5^{-\frac{1}{2} \log_{5} 25} \] ### Step 3: Simplify the logarithm Next, we need to simplify \(\log_{5} 25\). Since \(25 = 5^2\), we can use the property of logarithms: \[ \log_{5} 25 = \log_{5} (5^2) = 2 \] ### Step 4: Substitute back into the expression Now we substitute \(\log_{5} 25\) back into our expression: \[ 5^{-\frac{1}{2} \cdot 2} = 5^{-1} \] ### Step 5: Evaluate the final expression Finally, we can evaluate \(5^{-1}\): \[ 5^{-1} = \frac{1}{5} \] Thus, the value of \( 25^{\left(-\frac{1}{4} \log_{5} 25\right)} \) is: \[ \frac{1}{5} \] ### Final Answer: \[ \frac{1}{5} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

The value of ""_(25)^(-1//4 log_(5)(25)) is:

2.5 // 1000 is equal to

The value of log_(5)backslash(125*625)/(25) is equal to a.725 b.5 c.6 d.3125

Let x=(((81^(1/( (log_(5)9))+3^(3/( log_(sqrt6)3)))/(409)).( (sqrt7)^((2)/(log_(25)7))-125^( log_(25)6))) then value of log_(2)x is equal to :

The value of 5^(-2) is equal to 25.

DISHA PUBLICATION-LOGARITHMS-Practice Exercises (Standard Level)
  1. If (log(x)x)(log(3)2x)(log(2x)y)=log(x^(x^(2)), then what is the val...

    Text Solution

    |

  2. What is the value of log(10)(9/8)-log(10)((27)/(32))+log(10)(3/4) ?

    Text Solution

    |

  3. The value of 25^((-1//4log(5)25)) is equal to

    Text Solution

    |

  4. If log(10)x,log(10)y,log(10) z are in AP then x, y, z are in

    Text Solution

    |

  5. Find the value of (logsqrt(27)+logsqrt(8)-logsqrt(125))/(log6-log5)

    Text Solution

    |

  6. Find the value of x and y respectively for log(10)(x^(2)y^(3))=7 and l...

    Text Solution

    |

  7. Arrange the following in an ascending order A=log(7)2401,B=log(7)sqrt(...

    Text Solution

    |

  8. If 3log((3x^(2)))27-2log((3x))9=0, then what is the value of x?

    Text Solution

    |

  9. If log(k)N=6, and log(25k)(8N)=3, then k is

    Text Solution

    |

  10. What is the value of log(3)2,log(4)3.log(5)4. . .log(16)15 ?

    Text Solution

    |

  11. Find the value of x, if log(2x-3)-log(11.66-x)=1+log3

    Text Solution

    |

  12. If log(4)5=a and log(5)6=b then what is the value of log(3)2

    Text Solution

    |

  13. What is the value of x if log(3)x+log(9)x+log(27)x+log(81)x=(25)/(4)?

    Text Solution

    |

  14. What is the value of log(32)27xxlog(243)8 ?

    Text Solution

    |

  15. What is the value of x in the following expression? log(7)log(5)[sq...

    Text Solution

    |

  16. If x=log(a)(bc),y=log(b)(ca)" and "z=log(c)(ab), then which of the fo...

    Text Solution

    |

  17. Express "log"(3sqrt(a^(2)))/(b^(5)sqrt(x))" or "(a^(2//3))/(b^(5)sqrt...

    Text Solution

    |

  18. If log2=0.301,log3=0.477, find the number of digits in (108)^(10)

    Text Solution

    |

  19. loga^(n)//b^(n)+logb^(n)//c^(n)+llogc^(n)//a^(n)

    Text Solution

    |

  20. log(2)(9-2^(x))=10^(log(3-x)), solve for x.

    Text Solution

    |