Home
Class 14
MATHS
Find the value of (logsqrt(27)+logsqrt(8...

Find the value of `(logsqrt(27)+logsqrt(8)-logsqrt(125))/(log6-log5)`

A

`2/3`

B

`1/3`

C

`3/2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\log \sqrt{27} + \log \sqrt{8} - \log \sqrt{125}) / (\log 6 - \log 5)\), we will follow these steps: ### Step 1: Rewrite the logarithmic terms Using the property of logarithms, \(\log a^b = b \log a\), we can rewrite each logarithm: \[ \log \sqrt{27} = \log 27^{1/2} = \frac{1}{2} \log 27 \] \[ \log \sqrt{8} = \log 8^{1/2} = \frac{1}{2} \log 8 \] \[ \log \sqrt{125} = \log 125^{1/2} = \frac{1}{2} \log 125 \] ### Step 2: Substitute back into the expression Substituting these back into the original expression gives: \[ \frac{\frac{1}{2} \log 27 + \frac{1}{2} \log 8 - \frac{1}{2} \log 125}{\log 6 - \log 5} \] ### Step 3: Factor out \(\frac{1}{2}\) We can factor out \(\frac{1}{2}\) from the numerator: \[ = \frac{1}{2} \cdot \frac{\log 27 + \log 8 - \log 125}{\log 6 - \log 5} \] ### Step 4: Combine the logarithms in the numerator Using the property \(\log a + \log b = \log(ab)\) and \(\log a - \log b = \log\left(\frac{a}{b}\right)\), we can combine the logarithms: \[ \log 27 + \log 8 - \log 125 = \log\left(\frac{27 \cdot 8}{125}\right) \] ### Step 5: Calculate \(27 \cdot 8\) and simplify Calculating \(27 \cdot 8\): \[ 27 \cdot 8 = 216 \] Thus, we have: \[ \log\left(\frac{216}{125}\right) \] ### Step 6: Rewrite the denominator The denominator can be rewritten as: \[ \log 6 - \log 5 = \log\left(\frac{6}{5}\right) \] ### Step 7: Substitute back into the expression Now substituting these back, we have: \[ = \frac{1}{2} \cdot \frac{\log\left(\frac{216}{125}\right)}{\log\left(\frac{6}{5}\right)} \] ### Step 8: Use the change of base formula Using the change of base formula, we can express this as: \[ = \frac{1}{2} \cdot \log_{\frac{6}{5}}\left(\frac{216}{125}\right) \] ### Step 9: Calculate the value Now we need to find the exponent \(x\) such that: \[ \left(\frac{6}{5}\right)^x = \frac{216}{125} \] We can see that: \[ \frac{216}{125} = \left(\frac{6}{5}\right)^3 \] Thus, \(x = 3\). ### Step 10: Final result Therefore, substituting back gives: \[ = \frac{1}{2} \cdot 3 = \frac{3}{2} \] ### Conclusion The final value is: \[ \frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

Find the value of (log sqrt(27) + log sqrt(8) - log sqrt(125))/(log 6 - log 5)

Find the value of (log sqrt(27)+log8-log sqrt(1000))/(log(1.2))

Find the value of (logsqrt27+log8+logsqrt1000)/(log120)

Find the value of : ( log )_(81)27

Prove that (log3sqrt(3)+log sqrt(8)-log sqrt(125))/(log6-log5)=(3)/(2)

DISHA PUBLICATION-LOGARITHMS-Practice Exercises (Standard Level)
  1. If (log(x)x)(log(3)2x)(log(2x)y)=log(x^(x^(2)), then what is the val...

    Text Solution

    |

  2. What is the value of log(10)(9/8)-log(10)((27)/(32))+log(10)(3/4) ?

    Text Solution

    |

  3. The value of 25^((-1//4log(5)25)) is equal to

    Text Solution

    |

  4. If log(10)x,log(10)y,log(10) z are in AP then x, y, z are in

    Text Solution

    |

  5. Find the value of (logsqrt(27)+logsqrt(8)-logsqrt(125))/(log6-log5)

    Text Solution

    |

  6. Find the value of x and y respectively for log(10)(x^(2)y^(3))=7 and l...

    Text Solution

    |

  7. Arrange the following in an ascending order A=log(7)2401,B=log(7)sqrt(...

    Text Solution

    |

  8. If 3log((3x^(2)))27-2log((3x))9=0, then what is the value of x?

    Text Solution

    |

  9. If log(k)N=6, and log(25k)(8N)=3, then k is

    Text Solution

    |

  10. What is the value of log(3)2,log(4)3.log(5)4. . .log(16)15 ?

    Text Solution

    |

  11. Find the value of x, if log(2x-3)-log(11.66-x)=1+log3

    Text Solution

    |

  12. If log(4)5=a and log(5)6=b then what is the value of log(3)2

    Text Solution

    |

  13. What is the value of x if log(3)x+log(9)x+log(27)x+log(81)x=(25)/(4)?

    Text Solution

    |

  14. What is the value of log(32)27xxlog(243)8 ?

    Text Solution

    |

  15. What is the value of x in the following expression? log(7)log(5)[sq...

    Text Solution

    |

  16. If x=log(a)(bc),y=log(b)(ca)" and "z=log(c)(ab), then which of the fo...

    Text Solution

    |

  17. Express "log"(3sqrt(a^(2)))/(b^(5)sqrt(x))" or "(a^(2//3))/(b^(5)sqrt...

    Text Solution

    |

  18. If log2=0.301,log3=0.477, find the number of digits in (108)^(10)

    Text Solution

    |

  19. loga^(n)//b^(n)+logb^(n)//c^(n)+llogc^(n)//a^(n)

    Text Solution

    |

  20. log(2)(9-2^(x))=10^(log(3-x)), solve for x.

    Text Solution

    |