Home
Class 14
MATHS
What is the value of log(3)2,log(4)3.log...

What is the value of `log_(3)2,log_(4)3.log_(5)4. . .log_(16)15` ?

A

`1//2`

B

`1//3`

C

`2//3`

D

`1//4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( \log_3 2 \cdot \log_4 3 \cdot \log_5 4 \cdots \log_{16} 15 \), we will use the change of base formula for logarithms. The change of base formula states that: \[ \log_a b = \frac{\log b}{\log a} \] ### Step-by-step Solution: 1. **Apply the Change of Base Formula**: We can rewrite each logarithm in the product using the change of base formula: \[ \log_3 2 = \frac{\log 2}{\log 3}, \quad \log_4 3 = \frac{\log 3}{\log 4}, \quad \log_5 4 = \frac{\log 4}{\log 5}, \ldots, \quad \log_{16} 15 = \frac{\log 15}{\log 16} \] 2. **Rewrite the Entire Expression**: Now, substituting these into the original expression: \[ \log_3 2 \cdot \log_4 3 \cdot \log_5 4 \cdots \log_{16} 15 = \frac{\log 2}{\log 3} \cdot \frac{\log 3}{\log 4} \cdot \frac{\log 4}{\log 5} \cdots \frac{\log 15}{\log 16} \] 3. **Observe Cancellation**: Notice that in the product, each logarithm in the numerator cancels with the logarithm in the denominator of the next term: \[ = \frac{\log 2}{\log 16} \] 4. **Simplify the Remaining Expression**: We can express \( \log 16 \) in terms of \( \log 2 \): \[ \log 16 = \log (2^4) = 4 \log 2 \] Therefore, we have: \[ \frac{\log 2}{\log 16} = \frac{\log 2}{4 \log 2} = \frac{1}{4} \] 5. **Final Answer**: Thus, the value of the expression \( \log_3 2 \cdot \log_4 3 \cdots \log_{16} 15 \) is: \[ \boxed{\frac{1}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

The value of log_(3)4log_(4)5log_(5)6...log_(8)9=

What is the value of log_(2)(log_(3)81) ?

The value of (log_(3)8)/(log_(9)16log_(4)10)

Find the value of log_(4)*log_(2)log sqrt(2)log_(3)(x-21)=0

The value of log_(3)[log_(2){log_(4)(log_(5)625^(4))}] is ______.

DISHA PUBLICATION-LOGARITHMS-Practice Exercises (Standard Level)
  1. If (log(x)x)(log(3)2x)(log(2x)y)=log(x^(x^(2)), then what is the val...

    Text Solution

    |

  2. What is the value of log(10)(9/8)-log(10)((27)/(32))+log(10)(3/4) ?

    Text Solution

    |

  3. The value of 25^((-1//4log(5)25)) is equal to

    Text Solution

    |

  4. If log(10)x,log(10)y,log(10) z are in AP then x, y, z are in

    Text Solution

    |

  5. Find the value of (logsqrt(27)+logsqrt(8)-logsqrt(125))/(log6-log5)

    Text Solution

    |

  6. Find the value of x and y respectively for log(10)(x^(2)y^(3))=7 and l...

    Text Solution

    |

  7. Arrange the following in an ascending order A=log(7)2401,B=log(7)sqrt(...

    Text Solution

    |

  8. If 3log((3x^(2)))27-2log((3x))9=0, then what is the value of x?

    Text Solution

    |

  9. If log(k)N=6, and log(25k)(8N)=3, then k is

    Text Solution

    |

  10. What is the value of log(3)2,log(4)3.log(5)4. . .log(16)15 ?

    Text Solution

    |

  11. Find the value of x, if log(2x-3)-log(11.66-x)=1+log3

    Text Solution

    |

  12. If log(4)5=a and log(5)6=b then what is the value of log(3)2

    Text Solution

    |

  13. What is the value of x if log(3)x+log(9)x+log(27)x+log(81)x=(25)/(4)?

    Text Solution

    |

  14. What is the value of log(32)27xxlog(243)8 ?

    Text Solution

    |

  15. What is the value of x in the following expression? log(7)log(5)[sq...

    Text Solution

    |

  16. If x=log(a)(bc),y=log(b)(ca)" and "z=log(c)(ab), then which of the fo...

    Text Solution

    |

  17. Express "log"(3sqrt(a^(2)))/(b^(5)sqrt(x))" or "(a^(2//3))/(b^(5)sqrt...

    Text Solution

    |

  18. If log2=0.301,log3=0.477, find the number of digits in (108)^(10)

    Text Solution

    |

  19. loga^(n)//b^(n)+logb^(n)//c^(n)+llogc^(n)//a^(n)

    Text Solution

    |

  20. log(2)(9-2^(x))=10^(log(3-x)), solve for x.

    Text Solution

    |