Home
Class 14
MATHS
What is the value of x if log(3)x+log(9)...

What is the value of x if `log_(3)x+log_(9)x+log_(27)x+log_(81)x=(25)/(4)?`

A

9

B

27

C

81

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{3}x + \log_{9}x + \log_{27}x + \log_{81}x = \frac{25}{4} \), we will follow these steps: ### Step 1: Rewrite the logarithms in terms of base 3 We know that: - \( \log_{9}x = \log_{3^2}x = \frac{1}{2} \log_{3}x \) - \( \log_{27}x = \log_{3^3}x = \frac{1}{3} \log_{3}x \) - \( \log_{81}x = \log_{3^4}x = \frac{1}{4} \log_{3}x \) So we can rewrite the equation as: \[ \log_{3}x + \frac{1}{2} \log_{3}x + \frac{1}{3} \log_{3}x + \frac{1}{4} \log_{3}x = \frac{25}{4} \] ### Step 2: Combine the logarithmic terms Let \( y = \log_{3}x \). Then we have: \[ y + \frac{1}{2}y + \frac{1}{3}y + \frac{1}{4}y = \frac{25}{4} \] ### Step 3: Find a common denominator The common denominator for \( 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \) is 12. We can rewrite the equation as: \[ \frac{12}{12}y + \frac{6}{12}y + \frac{4}{12}y + \frac{3}{12}y = \frac{25}{4} \] ### Step 4: Combine the fractions Now combine the left side: \[ \left( \frac{12 + 6 + 4 + 3}{12} \right)y = \frac{25}{4} \] \[ \frac{25}{12}y = \frac{25}{4} \] ### Step 5: Solve for \( y \) To isolate \( y \), multiply both sides by \( \frac{12}{25} \): \[ y = \frac{25}{4} \cdot \frac{12}{25} = \frac{12}{4} = 3 \] ### Step 6: Convert back to \( x \) Since \( y = \log_{3}x \), we have: \[ \log_{3}x = 3 \] This implies: \[ x = 3^{3} = 27 \] ### Final Answer Thus, the value of \( x \) is \( 27 \). ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

Solve log_(3)x+log_(9)x+log_(27)x=(11)/(2)

log_(x)log_(2)log_(3)81

The value of x in the eqaution log_(2)(x)+log_(4)(x)+log_(16)x=(21)/(4)

The value of (log_(3) 5 xx log_(25) 27 xx log_(49) 7)/(log_(81)3) is

Solve: log_(9)x+log_(x)9+log_(x)x+log_(9)9=0

Find the value of x,log_(4)(x+3)-log_(4)(x-1)=log_(4)8-2

Find x if 9^(1//log_(2)3) le log_(2) x le log_(8) 27

The value of x,log_((1)/(2))x>=log_((1)/(3))x is

DISHA PUBLICATION-LOGARITHMS-Practice Exercises (Standard Level)
  1. If (log(x)x)(log(3)2x)(log(2x)y)=log(x^(x^(2)), then what is the val...

    Text Solution

    |

  2. What is the value of log(10)(9/8)-log(10)((27)/(32))+log(10)(3/4) ?

    Text Solution

    |

  3. The value of 25^((-1//4log(5)25)) is equal to

    Text Solution

    |

  4. If log(10)x,log(10)y,log(10) z are in AP then x, y, z are in

    Text Solution

    |

  5. Find the value of (logsqrt(27)+logsqrt(8)-logsqrt(125))/(log6-log5)

    Text Solution

    |

  6. Find the value of x and y respectively for log(10)(x^(2)y^(3))=7 and l...

    Text Solution

    |

  7. Arrange the following in an ascending order A=log(7)2401,B=log(7)sqrt(...

    Text Solution

    |

  8. If 3log((3x^(2)))27-2log((3x))9=0, then what is the value of x?

    Text Solution

    |

  9. If log(k)N=6, and log(25k)(8N)=3, then k is

    Text Solution

    |

  10. What is the value of log(3)2,log(4)3.log(5)4. . .log(16)15 ?

    Text Solution

    |

  11. Find the value of x, if log(2x-3)-log(11.66-x)=1+log3

    Text Solution

    |

  12. If log(4)5=a and log(5)6=b then what is the value of log(3)2

    Text Solution

    |

  13. What is the value of x if log(3)x+log(9)x+log(27)x+log(81)x=(25)/(4)?

    Text Solution

    |

  14. What is the value of log(32)27xxlog(243)8 ?

    Text Solution

    |

  15. What is the value of x in the following expression? log(7)log(5)[sq...

    Text Solution

    |

  16. If x=log(a)(bc),y=log(b)(ca)" and "z=log(c)(ab), then which of the fo...

    Text Solution

    |

  17. Express "log"(3sqrt(a^(2)))/(b^(5)sqrt(x))" or "(a^(2//3))/(b^(5)sqrt...

    Text Solution

    |

  18. If log2=0.301,log3=0.477, find the number of digits in (108)^(10)

    Text Solution

    |

  19. loga^(n)//b^(n)+logb^(n)//c^(n)+llogc^(n)//a^(n)

    Text Solution

    |

  20. log(2)(9-2^(x))=10^(log(3-x)), solve for x.

    Text Solution

    |