Home
Class 14
MATHS
If x=log(a)(bc),y=log(b)(ca)" and "z=log...

If `x=log_(a)(bc),y=log_(b)(ca)" and "z=log_(c)(ab)`, then which of the following is equal to 1 ?

A

`x+y+z`

B

`(1+x)^(-1)+(1+y)^(-1)+(1+z)^(-1)`

C

xyz

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given logarithmic expressions and find which of the options is equal to 1. Given: - \( x = \log_a(bc) \) - \( y = \log_b(ca) \) - \( z = \log_c(ab) \) We want to find which of the following expressions is equal to 1. ### Step 1: Rewrite the logarithmic expressions Using the property of logarithms, we can rewrite each expression: - \( x = \log_a(bc) = \log_a(b) + \log_a(c) \) - \( y = \log_b(ca) = \log_b(c) + \log_b(a) \) - \( z = \log_c(ab) = \log_c(a) + \log_c(b) \) ### Step 2: Analyze the expression \( \frac{1}{1 + x} + \frac{1}{1 + y} + \frac{1}{1 + z} \) We will check if the expression \( \frac{1}{1 + x} + \frac{1}{1 + y} + \frac{1}{1 + z} \) equals 1. ### Step 3: Substitute the values of \( x, y, z \) Substituting the values of \( x, y, z \): \[ \frac{1}{1 + \log_a(bc)} + \frac{1}{1 + \log_b(ca)} + \frac{1}{1 + \log_c(ab)} \] ### Step 4: Use the change of base formula Using the change of base formula, we can express these logarithms in terms of a common base (let's use base 10 for simplicity): \[ \log_a(b) = \frac{\log(b)}{\log(a)}, \quad \log_b(c) = \frac{\log(c)}{\log(b)}, \quad \log_c(a) = \frac{\log(a)}{\log(c)} \] Now, we can express \( x, y, z \) in terms of base 10 logarithms: - \( x = \frac{\log(b) + \log(c)}{\log(a)} \) - \( y = \frac{\log(c) + \log(a)}{\log(b)} \) - \( z = \frac{\log(a) + \log(b)}{\log(c)} \) ### Step 5: Simplify the expression Now we can simplify the expression: \[ \frac{1}{1 + x} = \frac{\log(a)}{\log(a) + \log(b) + \log(c)}, \quad \frac{1}{1 + y} = \frac{\log(b)}{\log(a) + \log(b) + \log(c)}, \quad \frac{1}{1 + z} = \frac{\log(c)}{\log(a) + \log(b) + \log(c)} \] Adding these fractions together: \[ \frac{\log(a) + \log(b) + \log(c)}{\log(a) + \log(b) + \log(c)} = 1 \] ### Conclusion Thus, we find that: \[ \frac{1}{1 + x} + \frac{1}{1 + y} + \frac{1}{1 + z} = 1 \] Therefore, the expression that equals 1 is: \[ \frac{1}{1 + x} + \frac{1}{1 + y} + \frac{1}{1 + z} = 1 \] ### Final Answer The option that is equal to 1 is: \[ \text{Option 2: } \frac{1}{1 + x} + \frac{1}{1 + y} + \frac{1}{1 + z} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

If x=log_(a)bc, y=log_(b)ac and z=log_(c)ab then which of the following is equal to unity ?

If x ="log"_(a)(bc), y ="log"_(b)(ca) " and "z = "log"_(c)(ab), then which of the following is correct?

If p = log_(a) bc, q = log_(b) ca and r = log_(c ) ab , then which of the following is true ?

If log_(3)x=a and log_(7)x=b, then which of the following is equal to log_(21)x?ab(b)(ab)/(a^(-1)+b^(-1))(1)/(a+b)(d)(1)/(a^(-1)+b^(-1))

If (log x)/(b-c)=(log y)/(c-a)=(log z)/(a-b), then which of the following is/are true? zyz=1 (b) x^(a)y^(b)z^(c)=1x^(b+c)y^(c+b)=1( d) xyz=x^(a)y^(b)z^(c)

If log_(y)x=(a.log_(z)y)=(b.log_(x)z)=ab , then which of the following pairs of values for (a,b) is not possible?

If =1+log_(a)(bc);y=1+log_(b)(ac);z=1+log_(c)(ab) then prove that xyz=xy+yz+zx

If x=log_(a)(bc),y=log_(b)(ca),z=log_(c)(ab) then (1)/(x+1)+(1)/(y+1)+(1)/(z+1) is equal to

If =1+log_(a)bc,y=1+log_(b)ca,z=1+log_(c)ab then prove that xyz=xy+yz+zx

If x=log_(b)a,y=log_(c)b,z=log_(a)c then xyz=

DISHA PUBLICATION-LOGARITHMS-Practice Exercises (Standard Level)
  1. If (log(x)x)(log(3)2x)(log(2x)y)=log(x^(x^(2)), then what is the val...

    Text Solution

    |

  2. What is the value of log(10)(9/8)-log(10)((27)/(32))+log(10)(3/4) ?

    Text Solution

    |

  3. The value of 25^((-1//4log(5)25)) is equal to

    Text Solution

    |

  4. If log(10)x,log(10)y,log(10) z are in AP then x, y, z are in

    Text Solution

    |

  5. Find the value of (logsqrt(27)+logsqrt(8)-logsqrt(125))/(log6-log5)

    Text Solution

    |

  6. Find the value of x and y respectively for log(10)(x^(2)y^(3))=7 and l...

    Text Solution

    |

  7. Arrange the following in an ascending order A=log(7)2401,B=log(7)sqrt(...

    Text Solution

    |

  8. If 3log((3x^(2)))27-2log((3x))9=0, then what is the value of x?

    Text Solution

    |

  9. If log(k)N=6, and log(25k)(8N)=3, then k is

    Text Solution

    |

  10. What is the value of log(3)2,log(4)3.log(5)4. . .log(16)15 ?

    Text Solution

    |

  11. Find the value of x, if log(2x-3)-log(11.66-x)=1+log3

    Text Solution

    |

  12. If log(4)5=a and log(5)6=b then what is the value of log(3)2

    Text Solution

    |

  13. What is the value of x if log(3)x+log(9)x+log(27)x+log(81)x=(25)/(4)?

    Text Solution

    |

  14. What is the value of log(32)27xxlog(243)8 ?

    Text Solution

    |

  15. What is the value of x in the following expression? log(7)log(5)[sq...

    Text Solution

    |

  16. If x=log(a)(bc),y=log(b)(ca)" and "z=log(c)(ab), then which of the fo...

    Text Solution

    |

  17. Express "log"(3sqrt(a^(2)))/(b^(5)sqrt(x))" or "(a^(2//3))/(b^(5)sqrt...

    Text Solution

    |

  18. If log2=0.301,log3=0.477, find the number of digits in (108)^(10)

    Text Solution

    |

  19. loga^(n)//b^(n)+logb^(n)//c^(n)+llogc^(n)//a^(n)

    Text Solution

    |

  20. log(2)(9-2^(x))=10^(log(3-x)), solve for x.

    Text Solution

    |