Home
Class 14
MATHS
Express "log"(3sqrt(a^(2)))/(b^(5)sqrt(...

Express `"log"(3sqrt(a^(2)))/(b^(5)sqrt(x))" or "(a^(2//3))/(b^(5)sqrt(c))` in terms of log a, log b and log c.

A

`3/2loga+5logb-2logc`

B

`2/3loga-5logb-1/2logc`

C

`2/3loga-5logb+1/2logc`

D

`3/2loga+5logb-1/2logc`

Text Solution

AI Generated Solution

The correct Answer is:
To express the logarithmic expressions \(\log\left(\frac{3\sqrt{a^2}}{b^5\sqrt{x}}\right)\) and \(\log\left(\frac{a^{2/3}}{b^5\sqrt{c}}\right)\) in terms of \(\log a\), \(\log b\), and \(\log c\), we will follow these steps: ### Step 1: Simplify the Logarithmic Expression We start with the expression: \[ \log\left(\frac{3\sqrt{a^2}}{b^5\sqrt{x}}\right) \] ### Step 2: Apply the Quotient Rule Using the logarithmic property \(\log\left(\frac{A}{B}\right) = \log A - \log B\), we can separate the logarithm: \[ \log(3\sqrt{a^2}) - \log(b^5\sqrt{x}) \] ### Step 3: Simplify Each Logarithm Now, we simplify each part: 1. For \(\log(3\sqrt{a^2})\): - We can express \(\sqrt{a^2}\) as \(a\), so: \[ \log(3a) = \log 3 + \log a \] 2. For \(\log(b^5\sqrt{x})\): - We can express \(\sqrt{x}\) as \(x^{1/2}\), so: \[ \log(b^5\sqrt{x}) = \log(b^5) + \log(\sqrt{x}) = 5\log b + \frac{1}{2}\log x \] ### Step 4: Combine the Results Now we combine the results: \[ \log(3\sqrt{a^2}) - \log(b^5\sqrt{x}) = (\log 3 + \log a) - (5\log b + \frac{1}{2}\log x) \] This simplifies to: \[ \log 3 + \log a - 5\log b - \frac{1}{2}\log x \] ### Step 5: Final Expression Thus, the expression \(\log\left(\frac{3\sqrt{a^2}}{b^5\sqrt{x}}\right)\) can be expressed as: \[ \log 3 + \log a - 5\log b - \frac{1}{2}\log x \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

log(((a^(-1)sqrt(3))^((1)/(3)))/(sqrt(b^(3)sqrt(a))))

If x=(100)^(a),y=(10000)^(b) and z=(10)^(c) find log(10sqrt(y))/(x^(2)z^(3)) in terms of a,b and c

1/((log)_(sqrt(b c))a b c)+1/((log)_(sqrt(c a))a b c)+1/((log)_(sqrt(a b))a b c) has the value of equal to: a.1//2 b. 1 c.2 d. 4

Statement-1: The solution set of the equation "log"_(x) 2 xx "log"_(2x) 2 = "log"_(4x) 2 "is" {2^(-sqrt(2)), 2^(sqrt(2))}. Statement-2 : "log"_(b)a = (1)/("log"_(a)b) " and log"_(a) xy = "log"_(a) x + "log"_(a)y

4^(5log_(4)(sqrt(2)(3-sqrt(6)))-6log_(8)(sqrt(3)-sqrt(2)))

Given that log2,=a and log3=b ; write log sqrt(96) in terms of a and b

Prove that 2^{{sqrt(log_a 4sqrtab + log_b 4sqrtab)-sqrt((log_a)4sqrt(b/a)+log_b 4sqrt(a/b))}sqrt(log_a b))= { 2 , b gea gt1and 2^(log_b a) , 1 ltblta

If log_(sqrt(3))5=a and log_(sqrt(3))2=b then value of log_(sqrt(3))300 is

Prove that: 2^(sqrt((log)_(a)4sqrt(ab)+(log)_(b)4sqrt(ab))-(log)_(a)4sqrt((b)/(a))+(log)_(b)4sqrt((pi)/(b)))sqrt((log)_(a)b)={2quad if b>=a>1 and 2^(log_(a)(b)) if 1

a=3(sqrt(8+2sqrt(7))-sqrt(8-2sqrt(7))),b=sqrt(((42)(30)+(36))) then the value of log _(a)b is equal to

DISHA PUBLICATION-LOGARITHMS-Practice Exercises (Standard Level)
  1. If (log(x)x)(log(3)2x)(log(2x)y)=log(x^(x^(2)), then what is the val...

    Text Solution

    |

  2. What is the value of log(10)(9/8)-log(10)((27)/(32))+log(10)(3/4) ?

    Text Solution

    |

  3. The value of 25^((-1//4log(5)25)) is equal to

    Text Solution

    |

  4. If log(10)x,log(10)y,log(10) z are in AP then x, y, z are in

    Text Solution

    |

  5. Find the value of (logsqrt(27)+logsqrt(8)-logsqrt(125))/(log6-log5)

    Text Solution

    |

  6. Find the value of x and y respectively for log(10)(x^(2)y^(3))=7 and l...

    Text Solution

    |

  7. Arrange the following in an ascending order A=log(7)2401,B=log(7)sqrt(...

    Text Solution

    |

  8. If 3log((3x^(2)))27-2log((3x))9=0, then what is the value of x?

    Text Solution

    |

  9. If log(k)N=6, and log(25k)(8N)=3, then k is

    Text Solution

    |

  10. What is the value of log(3)2,log(4)3.log(5)4. . .log(16)15 ?

    Text Solution

    |

  11. Find the value of x, if log(2x-3)-log(11.66-x)=1+log3

    Text Solution

    |

  12. If log(4)5=a and log(5)6=b then what is the value of log(3)2

    Text Solution

    |

  13. What is the value of x if log(3)x+log(9)x+log(27)x+log(81)x=(25)/(4)?

    Text Solution

    |

  14. What is the value of log(32)27xxlog(243)8 ?

    Text Solution

    |

  15. What is the value of x in the following expression? log(7)log(5)[sq...

    Text Solution

    |

  16. If x=log(a)(bc),y=log(b)(ca)" and "z=log(c)(ab), then which of the fo...

    Text Solution

    |

  17. Express "log"(3sqrt(a^(2)))/(b^(5)sqrt(x))" or "(a^(2//3))/(b^(5)sqrt...

    Text Solution

    |

  18. If log2=0.301,log3=0.477, find the number of digits in (108)^(10)

    Text Solution

    |

  19. loga^(n)//b^(n)+logb^(n)//c^(n)+llogc^(n)//a^(n)

    Text Solution

    |

  20. log(2)(9-2^(x))=10^(log(3-x)), solve for x.

    Text Solution

    |