Home
Class 14
MATHS
If log2=0.301,log3=0.477, find the numb...

If `log2=0.301,log3=0.477`, find the number of digits in `(108)^(10)`

A

21

B

27

C

20

D

18

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of digits in \( (108)^{10} \), we can use the formula for the number of digits of a number \( n \), which is given by: \[ \text{Number of digits} = \lfloor \log_{10} n \rfloor + 1 \] ### Step 1: Express \( 108 \) in terms of its prime factors First, we can express \( 108 \) as a product of its prime factors: \[ 108 = 2^2 \times 3^3 \] ### Step 2: Calculate \( (108)^{10} \) Now, we can write: \[ (108)^{10} = (2^2 \times 3^3)^{10} = 2^{20} \times 3^{30} \] ### Step 3: Find \( \log_{10}((108)^{10}) \) Using the properties of logarithms, we can find: \[ \log_{10}((108)^{10}) = \log_{10}(2^{20} \times 3^{30}) = \log_{10}(2^{20}) + \log_{10}(3^{30}) \] ### Step 4: Apply the power rule of logarithms Using the power rule of logarithms: \[ \log_{10}(2^{20}) = 20 \cdot \log_{10}(2) \] \[ \log_{10}(3^{30}) = 30 \cdot \log_{10}(3) \] ### Step 5: Substitute the given values of \( \log_{10}(2) \) and \( \log_{10}(3) \) Given that \( \log_{10}(2) = 0.301 \) and \( \log_{10}(3) = 0.477 \): \[ \log_{10}(2^{20}) = 20 \cdot 0.301 = 6.02 \] \[ \log_{10}(3^{30}) = 30 \cdot 0.477 = 14.31 \] ### Step 6: Combine the logarithmic results Now, we can add these two results together: \[ \log_{10}((108)^{10}) = 6.02 + 14.31 = 20.33 \] ### Step 7: Find the number of digits Finally, we apply the formula for the number of digits: \[ \text{Number of digits} = \lfloor 20.33 \rfloor + 1 = 20 + 1 = 21 \] ### Final Answer The number of digits in \( (108)^{10} \) is \( 21 \). ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LOGARITHMS

    DISHA PUBLICATION|Exercise Test Yourself |15 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

If log2=0.301 and log3=0.477, find the number of digits in: (3^(15)xx2^(10))

If log2=0.301 and log3=0.477, find the number of integers in 6^(20)

If log3= 0.4771, then find the number of digits in 3^(100)

If log2=0.30103,log3=0.47712, then the number of digits in 6^(20) is a.15 b.16 c.17 d.18

If log2=0.301 and log3=0.477, find the number of integers in 5^(200)

if log_(10)2= 0.3010 , then find the number of digits in (16)^(10)

If log_(10)2=0.30103,log_(10)3=0.47712, the number of digits in 3^(12)*2^(6)

If log_(10)2 = 0.3010, then find the number of digits in (64)^(10) .

DISHA PUBLICATION-LOGARITHMS-Practice Exercises (Standard Level)
  1. If (log(x)x)(log(3)2x)(log(2x)y)=log(x^(x^(2)), then what is the val...

    Text Solution

    |

  2. What is the value of log(10)(9/8)-log(10)((27)/(32))+log(10)(3/4) ?

    Text Solution

    |

  3. The value of 25^((-1//4log(5)25)) is equal to

    Text Solution

    |

  4. If log(10)x,log(10)y,log(10) z are in AP then x, y, z are in

    Text Solution

    |

  5. Find the value of (logsqrt(27)+logsqrt(8)-logsqrt(125))/(log6-log5)

    Text Solution

    |

  6. Find the value of x and y respectively for log(10)(x^(2)y^(3))=7 and l...

    Text Solution

    |

  7. Arrange the following in an ascending order A=log(7)2401,B=log(7)sqrt(...

    Text Solution

    |

  8. If 3log((3x^(2)))27-2log((3x))9=0, then what is the value of x?

    Text Solution

    |

  9. If log(k)N=6, and log(25k)(8N)=3, then k is

    Text Solution

    |

  10. What is the value of log(3)2,log(4)3.log(5)4. . .log(16)15 ?

    Text Solution

    |

  11. Find the value of x, if log(2x-3)-log(11.66-x)=1+log3

    Text Solution

    |

  12. If log(4)5=a and log(5)6=b then what is the value of log(3)2

    Text Solution

    |

  13. What is the value of x if log(3)x+log(9)x+log(27)x+log(81)x=(25)/(4)?

    Text Solution

    |

  14. What is the value of log(32)27xxlog(243)8 ?

    Text Solution

    |

  15. What is the value of x in the following expression? log(7)log(5)[sq...

    Text Solution

    |

  16. If x=log(a)(bc),y=log(b)(ca)" and "z=log(c)(ab), then which of the fo...

    Text Solution

    |

  17. Express "log"(3sqrt(a^(2)))/(b^(5)sqrt(x))" or "(a^(2//3))/(b^(5)sqrt...

    Text Solution

    |

  18. If log2=0.301,log3=0.477, find the number of digits in (108)^(10)

    Text Solution

    |

  19. loga^(n)//b^(n)+logb^(n)//c^(n)+llogc^(n)//a^(n)

    Text Solution

    |

  20. log(2)(9-2^(x))=10^(log(3-x)), solve for x.

    Text Solution

    |