Home
Class 14
MATHS
(log(8)17)/(log(9)23)-(log(2sqrt(2))17)/...

`(log_(8)17)/(log_(9)23)-(log_(2sqrt(2))17)/(log_(3)23)=`

A

`(17)/(8)`

B

`2/3`

C

`8/9`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\log_{8} 17}{\log_{9} 23} - \frac{\log_{2\sqrt{2}} 17}{\log_{3} 23} \] we will simplify each logarithm using the change of base formula and properties of logarithms. ### Step 1: Rewrite the logarithms in terms of base 2 and base 3 1. **Convert \(\log_{8} 17\)**: \[ \log_{8} 17 = \log_{2^3} 17 = \frac{1}{3} \log_{2} 17 \] 2. **Convert \(\log_{9} 23\)**: \[ \log_{9} 23 = \log_{3^2} 23 = \frac{1}{2} \log_{3} 23 \] 3. **Convert \(\log_{2\sqrt{2}} 17\)**: \[ \log_{2\sqrt{2}} 17 = \log_{2^{3/2}} 17 = \frac{2}{3} \log_{2} 17 \] 4. **Convert \(\log_{3} 23\)** (remains the same): \[ \log_{3} 23 \] ### Step 2: Substitute these values back into the expression Now substituting these into the original expression: \[ \frac{\frac{1}{3} \log_{2} 17}{\frac{1}{2} \log_{3} 23} - \frac{\frac{2}{3} \log_{2} 17}{\log_{3} 23} \] ### Step 3: Simplify each term 1. **First term**: \[ \frac{\frac{1}{3} \log_{2} 17}{\frac{1}{2} \log_{3} 23} = \frac{1}{3} \cdot \frac{2}{1} \cdot \frac{\log_{2} 17}{\log_{3} 23} = \frac{2}{3} \cdot \frac{\log_{2} 17}{\log_{3} 23} \] 2. **Second term**: \[ \frac{\frac{2}{3} \log_{2} 17}{\log_{3} 23} \] ### Step 4: Combine the terms Now we can combine the two terms: \[ \frac{2}{3} \cdot \frac{\log_{2} 17}{\log_{3} 23} - \frac{2}{3} \cdot \frac{\log_{2} 17}{\log_{3} 23} = 0 \] ### Final Answer Thus, the value of the expression is \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

(log_(3)243)/(log_(2)sqrt(32))

Prove that: (log_(9)11)/(log_(5)3)=(log_(3)11)/(log_(sqrt(5))3)

The value of ((log_(2)9)^(2))^((1)/(log_(2)(log_(2)9)))xx(sqrt(7))^((1)/(log_(4)7)) is .......... .

(log_(5)9*log_(7)5*log_(3)7)/(log_(3)sqrt(6))+(1)/(log_(4)sqrt(6)) is co-prime

(1)/(log_(3)2)+(2)/(log_(9)4)-(3)/(log_(27)8)=0

if (a+log_(4)3)/(a+log_(2)3)=(a+log_(8)3)/(a+log_(4)3)=b then find the value of b

log_((9)/(2))((9)/(sqrt(8)))

The value of ((log_(2)9)^(2))^(1/(log_(2)(log_(2)9))) xx (sqrt(7))1/(log_(4)7) is ....................

the value of log_(3)(log_(2)(log_(sqrt(3))81))