Home
Class 14
MATHS
The value of [(1)/(log(xy)(xyz))+(1)/(lo...

The value of `[(1)/(log_(xy)(xyz))+(1)/(log_(yz)(xyz))+(1)/(log_(zx)(xyz))]` is equal to

A

4

B

5

C

3

D

2

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate (1)/(log_(xy)(xyz))+(1)/(log_(yz)(xyz))+(1)/(log_(zx)(xyz))

Let L denots value of cos^(2)(alpha - beta) if sin2alpha + sin2beta = (1)/(2), cos2alpha + cos2beta = (sqrt(3))/(2) and M denotes value of (1)/(log_(xy)xyz) + (1)/(log_(yz)xyz) + (1)/(log_(zx)xyz) then 16L^(2) + M^(2) is

The value of 1/ ( 1+ log_(ab)c) + 1/(1+ log_(ac)b) + 1/ ( 1+ log_(bc)a) equals

1/(log_(xy)x + log_(xy)y = _______ ?

If x=500,y=100 and z=5050, then the value of (log_(xyz)x^(z))(1+log_(x)yz) is equal to

If (log_(e)x)/(y-z)=(log_(e)y)/(z-x)=(log_(e)z)/(x-y), prove that xyz=1

If (logx)/(a - b) = (logy)/(b-c) = (log z)/(c -a) , then xyz is equal to :

If the positive numbers x,y&z satisfy xyz=1000,log_(10)x log_(10)y+log_(10)xy log_(10)z=1 and log_(x)10+log_(y)10+log_(z)10=(1)/(3) then the value of root(3)((log_(10)x)^(3)+(log_(10)y)^(3)+(log_(10)z)^(3)) is