Home
Class 14
MATHS
If a=log(24)12,b=log(36)24,C=log(48)36. ...

If `a=log_(24)12,b=log_(36)24,C=log_(48)36`. then `1+abc` is equal to

A

2ac

B

2bc

C

2 ab

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(1 + abc\) where \(a = \log_{24} 12\), \(b = \log_{36} 24\), and \(c = \log_{48} 36\). ### Step-by-Step Solution: 1. **Convert the logarithms to a common base:** We can express \(a\), \(b\), and \(c\) using the change of base formula: \[ a = \frac{\log 12}{\log 24}, \quad b = \frac{\log 24}{\log 36}, \quad c = \frac{\log 36}{\log 48} \] 2. **Calculate \(abc\):** Now, we multiply \(a\), \(b\), and \(c\): \[ abc = \left(\frac{\log 12}{\log 24}\right) \left(\frac{\log 24}{\log 36}\right) \left(\frac{\log 36}{\log 48}\right) \] Notice that the \(\log 24\) in the numerator of \(a\) cancels with the \(\log 24\) in the denominator of \(b\), and the \(\log 36\) in the numerator of \(b\) cancels with the \(\log 36\) in the denominator of \(c\): \[ abc = \frac{\log 12}{\log 48} \] 3. **Find \(1 + abc\):** Now we can find \(1 + abc\): \[ 1 + abc = 1 + \frac{\log 12}{\log 48} \] To combine these, we can express \(1\) as \(\frac{\log 48}{\log 48}\): \[ 1 + abc = \frac{\log 48}{\log 48} + \frac{\log 12}{\log 48} = \frac{\log 48 + \log 12}{\log 48} \] 4. **Use properties of logarithms:** Using the property of logarithms that states \(\log a + \log b = \log(ab)\): \[ \log 48 + \log 12 = \log(48 \times 12) = \log 576 \] Therefore: \[ 1 + abc = \frac{\log 576}{\log 48} \] 5. **Simplify further:** We can express \(576\) as \(24^2\): \[ 1 + abc = \frac{\log(24^2)}{\log 48} = \frac{2 \log 24}{\log 48} \] 6. **Relate back to \(a\) and \(c\):** We know: \[ a = \frac{\log 12}{\log 24} \quad \text{and} \quad c = \frac{\log 36}{\log 48} \] We can express \( \frac{\log 24}{\log 48} \) in terms of \(a\) and \(c\): \[ \frac{\log 24}{\log 48} = 1 - c \] Thus: \[ 1 + abc = 2a \] ### Final Answer: The value of \(1 + abc\) is \(2a\).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

If a=log_(24)12,b=log_(36)24,c=log_(48)36 then show that 1+abc=2bc

a=log_(24)12,b=log_(36)24,c=log_(48)36, if 1+abc=lambda bc then lambda is equal to

If x=log_(k)b=log_(b)c=(1)/(2)log_(c)d, then log_(k)d is equal to

If log_(2)[log_(3)(log_(2)x)]=1, then x is equal to a.0 b.12 c.128d.512

If a,b,c are distinct real number different from 1 such that (log_(b)a. log_(c)a-log_(a)a) + (log_(a)b.log_(c)b.log_(c)b-log_(b)b) +(log_(a)c.log_(b)c-log_(c)C)=0 , then abc is equal to

If a=log_(12)18,b=log_(24)54, then find the value of ab+5(a-b)

If x= log_(5)3 and y = log_(5)8 then log_(5)24 in terms of x,y is equal to _______

If a=log_(x)(yz),b=log_(y)(zx),c=log_(z)(xy) where x,y,z are positive reals not equal to unity,then abc-a-b-c is equal to

If 10^(log_a(log_b(log_c x)))=1 and 10^((log_b(log_c(log_a x)))=1 then, a is equal to