Home
Class 14
MATHS
Calculate: log(2)(2//3)+log(4)(9//4)...

Calculate: `log_(2)(2//3)+log_(4)(9//4)`

A

1

B

2

C

0

D

`3//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log_{2}\left(\frac{2}{3}\right) + \log_{4}\left(\frac{9}{4}\right) \), we can follow these steps: ### Step 1: Rewrite the logarithm with base 4 We know that \( \log_{4}(x) \) can be rewritten using the change of base formula: \[ \log_{4}(x) = \frac{\log_{2}(x)}{\log_{2}(4)} \] Since \( \log_{2}(4) = 2 \), we can rewrite \( \log_{4}\left(\frac{9}{4}\right) \) as: \[ \log_{4}\left(\frac{9}{4}\right) = \frac{\log_{2}\left(\frac{9}{4}\right)}{2} \] ### Step 2: Substitute back into the expression Now we can substitute this back into our original expression: \[ \log_{2}\left(\frac{2}{3}\right) + \log_{4}\left(\frac{9}{4}\right) = \log_{2}\left(\frac{2}{3}\right) + \frac{1}{2} \log_{2}\left(\frac{9}{4}\right) \] ### Step 3: Combine the logarithms We can combine the logarithms using the property \( \log_{a}(m) + \log_{a}(n) = \log_{a}(m \cdot n) \): \[ \log_{2}\left(\frac{2}{3}\right) + \frac{1}{2} \log_{2}\left(\frac{9}{4}\right) = \log_{2}\left(\frac{2}{3}\right) + \log_{2}\left(\left(\frac{9}{4}\right)^{\frac{1}{2}}\right) \] This simplifies to: \[ \log_{2}\left(\frac{2}{3} \cdot \sqrt{\frac{9}{4}}\right) \] ### Step 4: Simplify the argument Now we simplify the argument: \[ \sqrt{\frac{9}{4}} = \frac{3}{2} \] Thus, we have: \[ \frac{2}{3} \cdot \frac{3}{2} = 1 \] ### Step 5: Evaluate the logarithm Now we can evaluate the logarithm: \[ \log_{2}(1) = 0 \] ### Final Answer Thus, the final answer is: \[ \log_{2}\left(\frac{2}{3}\right) + \log_{4}\left(\frac{9}{4}\right) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate: 81^(1//log_(5)3) + 27^(log_(9)36) + 3^(4//log_(l)9)

The number of solution of log_(9)(2x-5) = log_(3) (x-4) is:

Find the value of log_(2)(2root(3)(9)-2)+log_(2)(12root(3)(3)+4+4root(3)(9))

log_(x)(9x^(2))*log_(3)^(2)(x)=4

Which of the following when simplified, vanishes? 1/((log)_3 2)+2/((log)_9 4)-3/((log)_(27)8) (log)_2(2/3)+(log)_4(9/4) -(log)_8(log)_4(log)_2 16 (log)_(10)cot1^0+ (log)_(10)cot2^0+(log)_(10)cot3^0++(log)_(10)cot89^0

Evaluate log_(3)4.log_(4)5.log_(5)6.log_(6)7.log_(7)8.log_(8)9

Which of the following numbers are positive/negative? log_(2)7( ii) log_(0.2)3 (iii) log_(1/3)((1)/(5))log_(4)3(v)log_(2)(log_(2)9)

The value of ((log_(2)9)^(2))^(1/(log_(2)(log_(2)9))) xx (sqrt(7))1/(log_(4)7) is ....................

The value of ((log_(2)9)^(2))^((1)/(log_(2)(log_(2)9)))xx(sqrt(7))^((1)/(log_(4)7)) is .......... .

The value of ((log_(2)9)^(2))^(1/(log_(2)(log_(2)9)))xx(sqrt7)^(1/(log_(4)7)) is ________.