Home
Class 14
MATHS
If log(3)2,log(3)(2^(x)-5),log(3)(2^(x)-...

If `log_(3)2,log_(3)(2^(x)-5),log_(3)(2^(x)-7/2)` are in arithmetic progression, then the value of x is equal to

A

5

B

4

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that \( \log_3 2 \), \( \log_3 (2^x - 5) \), and \( \log_3 \left(2^x - \frac{7}{2}\right) \) are in arithmetic progression (AP). ### Step-by-step Solution: 1. **Understanding Arithmetic Progression**: For three terms \( a, b, c \) to be in AP, the condition is: \[ a + c = 2b \] Here, we can assign: - \( a = \log_3 2 \) - \( b = \log_3 (2^x - 5) \) - \( c = \log_3 \left(2^x - \frac{7}{2}\right) \) 2. **Setting Up the Equation**: Using the AP condition, we write: \[ \log_3 2 + \log_3 \left(2^x - \frac{7}{2}\right) = 2 \log_3 (2^x - 5) \] 3. **Using Logarithmic Properties**: We can combine the left-hand side using the property of logarithms: \[ \log_3 \left(2 \cdot \left(2^x - \frac{7}{2}\right)\right) = \log_3 \left((2^x - 5)^2\right) \] This gives us: \[ 2 \cdot \left(2^x - \frac{7}{2}\right) = (2^x - 5)^2 \] 4. **Expanding the Equation**: Expanding both sides: \[ 2 \cdot 2^x - 7 = (2^x - 5)(2^x - 5) \] \[ 2 \cdot 2^x - 7 = (2^x)^2 - 10 \cdot 2^x + 25 \] 5. **Rearranging the Equation**: Rearranging gives: \[ 0 = (2^x)^2 - 12 \cdot 2^x + 32 \] 6. **Substituting \( t = 2^x \)**: Let \( t = 2^x \). The equation becomes: \[ t^2 - 12t + 32 = 0 \] 7. **Solving the Quadratic Equation**: Using the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{12 \pm \sqrt{(-12)^2 - 4 \cdot 1 \cdot 32}}{2 \cdot 1} \] \[ t = \frac{12 \pm \sqrt{144 - 128}}{2} = \frac{12 \pm \sqrt{16}}{2} = \frac{12 \pm 4}{2} \] This gives: \[ t = \frac{16}{2} = 8 \quad \text{or} \quad t = \frac{8}{2} = 4 \] 8. **Finding \( x \)**: Since \( t = 2^x \): - If \( t = 8 \), then \( 2^x = 8 \) implies \( x = 3 \). - If \( t = 4 \), then \( 2^x = 4 \) implies \( x = 2 \). 9. **Checking Validity**: We need to check which value satisfies the logarithmic conditions: - For \( x = 2 \): \( \log_3 (2^2 - 5) = \log_3 (-1) \) (not valid). - For \( x = 3 \): \( \log_3 (2^3 - 5) = \log_3 (3) \) and \( \log_3 (2^3 - \frac{7}{2}) = \log_3 \left(\frac{1}{2}\right) \) (valid). Thus, the only valid solution is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-(7)/(2)) are in arithmetic progression,determine the value of x.

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-(7)/(2)) are in arithmetic progression,determine the value of x.(1991,4M)

If the reciprocals of 2, log_((3^(x)-4))4 and log_(3^(x)+(7)/(2))4 are in arithmetic progression, then x is equal to

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-(7)/(2)) are in A.P, determine the value of x.

If log_(3)(2),log_(3)(2^(x)-5),log_(3)(2^(x)-(7)/(2)) are in A.P.Determine the value of x.

If log_(l)x,log_(m)x,log_(n)x are in arithmetic progression and x!=1, then n^(2) is :