Home
Class 14
MATHS
If 1,log(81)(3^(x)+48)" and "log(9)(3^(x...

If `1,log_(81)(3^(x)+48)" and "log_(9)(3^(x)-(8)/(3))` are in A.P., then find x

A

1

B

2

C

9

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the logarithmic expressions \( 1, \log_{81}(3^x + 48) \), and \( \log_{9}(3^x - \frac{8}{3}) \) are in Arithmetic Progression (A.P.). ### Step-by-Step Solution: 1. **Understanding A.P. Condition**: For three numbers \( a, b, c \) to be in A.P., the condition is: \[ 2b = a + c \] Here, let \( a = 1 \), \( b = \log_{81}(3^x + 48) \), and \( c = \log_{9}(3^x - \frac{8}{3}) \). 2. **Setting Up the Equation**: From the A.P. condition, we have: \[ 2 \log_{81}(3^x + 48) = 1 + \log_{9}(3^x - \frac{8}{3}) \] 3. **Changing the Base of Logarithms**: We can convert the logarithms to a common base (base 3): \[ \log_{81}(3^x + 48) = \frac{\log_{3}(3^x + 48)}{\log_{3}(81)} = \frac{\log_{3}(3^x + 48)}{4} \] \[ \log_{9}(3^x - \frac{8}{3}) = \frac{\log_{3}(3^x - \frac{8}{3})}{\log_{3}(9)} = \frac{\log_{3}(3^x - \frac{8}{3})}{2} \] 4. **Substituting Back**: Substitute these into the A.P. equation: \[ 2 \cdot \frac{\log_{3}(3^x + 48)}{4} = 1 + \frac{\log_{3}(3^x - \frac{8}{3})}{2} \] Simplifying gives: \[ \frac{\log_{3}(3^x + 48)}{2} = 1 + \frac{\log_{3}(3^x - \frac{8}{3})}{2} \] 5. **Multiplying Through by 2**: Multiply the entire equation by 2 to eliminate the fractions: \[ \log_{3}(3^x + 48) = 2 + \log_{3}(3^x - \frac{8}{3}) \] 6. **Rearranging the Equation**: Rearranging gives: \[ \log_{3}(3^x + 48) - \log_{3}(3^x - \frac{8}{3}) = 2 \] Using the property of logarithms \( \log_{a}(b) - \log_{a}(c) = \log_{a}(\frac{b}{c}) \): \[ \log_{3}\left(\frac{3^x + 48}{3^x - \frac{8}{3}}\right) = 2 \] 7. **Exponentiating**: Exponentiate both sides to remove the logarithm: \[ \frac{3^x + 48}{3^x - \frac{8}{3}} = 3^2 \] Simplifying gives: \[ \frac{3^x + 48}{3^x - \frac{8}{3}} = 9 \] 8. **Cross-Multiplying**: Cross-multiplying results in: \[ 3^x + 48 = 9(3^x - \frac{8}{3}) \] Expanding the right side: \[ 3^x + 48 = 9 \cdot 3^x - 24 \] 9. **Rearranging Terms**: Rearranging gives: \[ 48 + 24 = 9 \cdot 3^x - 3^x \] \[ 72 = 8 \cdot 3^x \] 10. **Solving for \( x \)**: Dividing both sides by 8: \[ 3^x = 9 \] Since \( 9 = 3^2 \): \[ x = 2 \] ### Final Answer: The value of \( x \) is \( 2 \).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    DISHA PUBLICATION|Exercise Practice Exercises (Expert Level)|35 Videos
  • LINEAR EQUATIONS

    DISHA PUBLICATION|Exercise TEST YOUSELF|15 Videos
  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos

Similar Questions

Explore conceptually related problems

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-(7)/(2)) are in A.P, determine the value of x.

If 1,log_(9)(3^(1-x)+2),log_(3)(4*3^(x)-1) are in A.P then x equals to

If 1,log_(4)(x+3),log_(2)(2x-3) are in AP, then x is

If log_(10)(2),log_(10)(2^(x)+1),log_(10)(2^(x)-3) are in A.P then x is equal to (i)log_(2)(5)( ii) log_(2)(-1) (iii) log_(2)((1)/(5))( iv) log_(5)(2)

If 1,log_(2)(3^(1-x)+2),log_(2)(4*3^(3)-1) are in A.P then x equals to