Home
Class 14
MATHS
Solve : |x^(2) + 3x| + x^(2) - 2 ge 0...

Solve : `|x^(2) + 3x| + x^(2) - 2 ge 0`

A

`(-oo, -2//3]`

B

`(-oo, -2//3] cup [1, oo)`

C

`(-oo, -2//3] cup [1//2, oo)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( |x^2 + 3x| + x^2 - 2 \geq 0 \), we will consider two cases based on the definition of the absolute value. ### Step 1: Identify the cases for the absolute value The expression inside the absolute value, \( x^2 + 3x \), can be positive or negative. We need to find the points where it equals zero: \[ x^2 + 3x = 0 \] Factoring gives: \[ x(x + 3) = 0 \] Thus, the critical points are \( x = 0 \) and \( x = -3 \). ### Step 2: Case 1: \( x^2 + 3x \geq 0 \) In this case, the absolute value can be removed: \[ |x^2 + 3x| = x^2 + 3x \] Substituting into the inequality: \[ x^2 + 3x + x^2 - 2 \geq 0 \] This simplifies to: \[ 2x^2 + 3x - 2 \geq 0 \] ### Step 3: Factor the quadratic We will factor \( 2x^2 + 3x - 2 \): \[ 2x^2 + 4x - x - 2 \geq 0 \] Grouping gives: \[ (2x^2 + 4x) + (-x - 2) \geq 0 \] Factoring out common terms: \[ 2x(x + 2) - 1(x + 2) \geq 0 \] Factoring further: \[ (2x - 1)(x + 2) \geq 0 \] ### Step 4: Find the critical points The critical points from the factors are: 1. \( 2x - 1 = 0 \) ⇒ \( x = \frac{1}{2} \) 2. \( x + 2 = 0 \) ⇒ \( x = -2 \) ### Step 5: Test intervals We will test the intervals determined by the critical points \( -2 \) and \( \frac{1}{2} \): - Interval 1: \( (-\infty, -2) \) - Interval 2: \( (-2, \frac{1}{2}) \) - Interval 3: \( (\frac{1}{2}, \infty) \) 1. **For \( x < -2 \)** (e.g., \( x = -3 \)): \[ (2(-3) - 1)(-3 + 2) = (-7)(-1) = 7 \geq 0 \quad \text{(True)} \] 2. **For \( -2 < x < \frac{1}{2} \)** (e.g., \( x = 0 \)): \[ (2(0) - 1)(0 + 2) = (-1)(2) = -2 \geq 0 \quad \text{(False)} \] 3. **For \( x > \frac{1}{2} \)** (e.g., \( x = 1 \)): \[ (2(1) - 1)(1 + 2) = (1)(3) = 3 \geq 0 \quad \text{(True)} \] ### Step 6: Combine results for Case 1 The solution for this case is: \[ x \in (-\infty, -2] \cup \left[\frac{1}{2}, \infty\right) \] ### Step 7: Case 2: \( x^2 + 3x < 0 \) In this case, we have: \[ |x^2 + 3x| = -(x^2 + 3x) \] Substituting into the inequality: \[ -(x^2 + 3x) + x^2 - 2 \geq 0 \] This simplifies to: \[ -3x - 2 \geq 0 \] Rearranging gives: \[ -3x \geq 2 \quad \Rightarrow \quad x \leq -\frac{2}{3} \] ### Step 8: Combine results for Case 2 The solution for this case is: \[ x \in \left(-\infty, -\frac{2}{3}\right] \] ### Final Solution Combining the results from both cases, we have: \[ x \in (-\infty, -2] \cup \left(-\infty, -\frac{2}{3}\right] \cup \left[\frac{1}{2}, \infty\right) \] This simplifies to: \[ x \in (-\infty, -\frac{2}{3}] \cup \left[\frac{1}{2}, \infty\right) \]
Promotional Banner

Topper's Solved these Questions

  • MENSURATION

    DISHA PUBLICATION|Exercise TEST YOURSELF|15 Videos
  • MOCK TEST - 4

    DISHA PUBLICATION|Exercise Multiple Choice Questions|34 Videos

Similar Questions

Explore conceptually related problems

The solution of |x^(2) + 3x|+x^(2)-2 ge 0 is

Solve : |x| - |x-2| ge 1

Solve |3x +2| ge 7

Solve : | x - 1 |+ |x -2| ge 3

Solve 2(x-3) + 4 ge 4 - x

Solve : (2)/(x+3) ge 0

Solve : (x)/(6)ge (8-3x)/(2) +4

solve: |x-2|+|x-4| ge 8

Solve : 2(5x - 7) ge 3(4x - 5)

Solve : x + 2 ge 0 and 2x - 5 le 0

DISHA PUBLICATION-MOCK TEST - 3-Multiple Choice Questions
  1. If highest power of 8 in N! is 19 find highest power of 8 in (N+1)!.

    Text Solution

    |

  2. Find the value of x such that (x+3)(3x-2)^(5)(7-x)^(3)(5x + 8)^(2) ge ...

    Text Solution

    |

  3. If a^(2) + b^(2) = 7ab, then find the value of log(2)((a+b)/(3))

    Text Solution

    |

  4. Find the value of (x^(log y - log z))(y^(log z-log x))(z^(log x - log ...

    Text Solution

    |

  5. Convert (332.22)(4) to base 5.

    Text Solution

    |

  6. Find the value of x such that log(0.3)(x-1) = log(0.09)(x-1).

    Text Solution

    |

  7. If a and b are two negative integers whose difference is 3 and sum of ...

    Text Solution

    |

  8. The total number of ways in which 5 balls of different colours can be ...

    Text Solution

    |

  9. Find the ratio of circum radius (R) to inradius (r) of a triangle whos...

    Text Solution

    |

  10. For a Delta with sides a, b and c, which one of the following statemen...

    Text Solution

    |

  11. If alpha and beta are roots of ax^(2) + bx + c = 0, then find the valu...

    Text Solution

    |

  12. If (p^(2) + 2)x^(2) + 2p^(2)x + (p^(2) - 4) = 0 has roots of opposite ...

    Text Solution

    |

  13. Solve : |x^(2) + 3x| + x^(2) - 2 ge 0

    Text Solution

    |

  14. If A + B = 45^(@), then find the value of (1+tan A)(1+ tan B)

    Text Solution

    |

  15. How many values of [x] exists such that 4{x} = x + [x]

    Text Solution

    |

  16. In how many ways can two squares be chosen on a 8 xx 8 chessboard such...

    Text Solution

    |

  17. Price of two types of rice is 20 and 16 kg. A shopkeeper mixed them in...

    Text Solution

    |

  18. If A can complete a project in 3 days, B can complete the same project...

    Text Solution

    |

  19. If N = 10 ! + 20! + 30! + ……….. + 100 !. Then find the highest power o...

    Text Solution

    |

  20. Solve for x if (x)^(2) + (x+1)^(2) = 25, where (x) denotes the least i...

    Text Solution

    |