Home
Class 14
MATHS
If theta=(pi)/(8), then what is the valu...

If `theta=(pi)/(8)`, then what is the value of `(2cos theta+1)^(10)(2cos2theta-1)^(10)(2cos theta-1)^(10)(2cos4 theta-1)^(10)` ?

A

A) 0

B

B) 1

C

C) 2

D

D) 4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((2\cos \theta + 1)^{10}(2\cos 2\theta - 1)^{10}(2\cos \theta - 1)^{10}(2\cos 4\theta - 1)^{10}\) given that \(\theta = \frac{\pi}{8}\), we can follow these steps: ### Step 1: Substitute \(\theta\) We start by substituting \(\theta = \frac{\pi}{8}\) into the expression: \[ (2\cos(\frac{\pi}{8}) + 1)^{10}(2\cos(\frac{\pi}{4}) - 1)^{10}(2\cos(\frac{\pi}{8}) - 1)^{10}(2\cos(\frac{\pi}{2}) - 1)^{10} \] ### Step 2: Calculate \(2\cos(\frac{\pi}{4}) - 1\) We know that \(\cos(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}\): \[ 2\cos(\frac{\pi}{4}) - 1 = 2 \cdot \frac{1}{\sqrt{2}} - 1 = \frac{2}{\sqrt{2}} - 1 = \sqrt{2} - 1 \] ### Step 3: Calculate \(2\cos(\frac{\pi}{2}) - 1\) We know that \(\cos(\frac{\pi}{2}) = 0\): \[ 2\cos(\frac{\pi}{2}) - 1 = 2 \cdot 0 - 1 = -1 \] ### Step 4: Substitute values into the expression Now we can substitute these values back into the expression: \[ (2\cos(\frac{\pi}{8}) + 1)^{10} \cdot (\sqrt{2} - 1)^{10} \cdot (2\cos(\frac{\pi}{8}) - 1)^{10} \cdot (-1)^{10} \] Since \((-1)^{10} = 1\), we can simplify: \[ (2\cos(\frac{\pi}{8}) + 1)^{10} \cdot (\sqrt{2} - 1)^{10} \cdot (2\cos(\frac{\pi}{8}) - 1)^{10} \] ### Step 5: Use the identity \(a^2 - b^2\) Notice that we can use the identity \(a^2 - b^2 = (a + b)(a - b)\) on the first two terms: \[ (2\cos(\frac{\pi}{8}) + 1)^{10} \cdot (2\cos(\frac{\pi}{8}) - 1)^{10} = [(2\cos(\frac{\pi}{8}))^2 - 1^2]^{10} = [4\cos^2(\frac{\pi}{8}) - 1]^{10} \] ### Step 6: Calculate \(4\cos^2(\frac{\pi}{8}) - 1\) We need to find \(\cos^2(\frac{\pi}{8})\). Using the double angle formula: \[ \cos(2\theta) = 2\cos^2(\theta) - 1 \implies \cos(\frac{\pi}{4}) = 2\cos^2(\frac{\pi}{8}) - 1 \] Substituting \(\cos(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}\): \[ \frac{1}{\sqrt{2}} = 2\cos^2(\frac{\pi}{8}) - 1 \implies 2\cos^2(\frac{\pi}{8}) = \frac{1}{\sqrt{2}} + 1 \] \[ \cos^2(\frac{\pi}{8}) = \frac{1 + \sqrt{2}}{2\sqrt{2}} \] ### Step 7: Substitute back into the expression Now substituting back: \[ 4\cos^2(\frac{\pi}{8}) - 1 = 4 \cdot \frac{1 + \sqrt{2}}{2\sqrt{2}} - 1 = \frac{4(1 + \sqrt{2})}{2\sqrt{2}} - 1 = \frac{2(1 + \sqrt{2})}{\sqrt{2}} - 1 \] This simplifies to: \[ \frac{2 + 2\sqrt{2} - \sqrt{2}}{\sqrt{2}} = \frac{2 + \sqrt{2}}{\sqrt{2}} \] ### Step 8: Final Expression Thus, we have: \[ \left( \frac{2 + \sqrt{2}}{\sqrt{2}} \right)^{10} \cdot (\sqrt{2} - 1)^{10} \] Using the identity \( (a + b)(a - b) = a^2 - b^2 \): \[ \left( \sqrt{2} \right)^{20} = 2^{10} \] ### Final Answer The final value of the expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos
  • STATISTICS

    PUNEET DOGRA|Exercise PRE YEAR QUESTIONS |163 Videos
  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos

Similar Questions

Explore conceptually related problems

If theta=(pi)/(8), then what is value of (2cos theta+1)^(10)(2cos2 theta-1)^(10)(2cos theta-1)^(10)(2cos4 theta-1)^(10)?(i)0(ii)1(iii)2(iv)4

The value (2cos theta-1)(2cos2 theta-1)(2cos4 theta-1)(2cos8 theta-1)=

What is the value of (1-cos^(2)theta)cos ec^(2)theta?

If pi

If pi

The value of (1+ cos theta)(1- cos theta) "cosec"^(2) theta =

If pi/2

What is the simplified value of [(cos^(2) theta)/(1+sin theta)- (sin^(2) theta)/(1 + cos theta)]^(2) ?

(sin theta)/(1+cos theta)+(1+cos theta)/(sin theta)=2cos ec theta

Find the value of (cos6 theta+6cos4 theta+15cos2 theta+10)/(cos5 theta+5cos theta+10cos theta)

PUNEET DOGRA-TRIGONOMETRY-PREV YEAR QUESTIONS
  1. If sin2theta = cos3theta, where 0 le theta le (pi)/(2), then what is s...

    Text Solution

    |

  2. If A= sin^(2)theta + cos^(4)theta, where 0 le theta le pi/2, then whic...

    Text Solution

    |

  3. If theta=(pi)/(8), then what is the value of (2cos theta+1)^(10)(2cos2...

    Text Solution

    |

  4. What is/are the solutions of the trigonometric equation cosec x + cotx...

    Text Solution

    |

  5. A is an angle in the fourth quadrant. If satisfies the trigonometric e...

    Text Solution

    |

  6. If sec(theta-alpha), sectheta and sec(theta+alpha) are in AP, where co...

    Text Solution

    |

  7. What is (2 tan theta)/(1+tan^2theta) equals to ?

    Text Solution

    |

  8. The maximum value of sin(x+pi/5)+cos(x+pi/5),where x epsilon (0,pi/...

    Text Solution

    |

  9. If cos alpha + cos beta + cos gamma = 0, where 0 lt alpha le (pi)/(2),...

    Text Solution

    |

  10. Suppose cos A is given. If only one value of cos (A/2) is possible, th...

    Text Solution

    |

  11. If sin alpha + sin beta = 0 = cos alpha + cos beta. Where 0 lt beta lt...

    Text Solution

    |

  12. (sin(x+y))/(sin(x-y))=(a+b)/(a-b), then (tanx)/(tany)=?

    Text Solution

    |

  13. What is sin 105^@ + cos105^@ equal to:

    Text Solution

    |

  14. What is (sin5x-sin3x)/(cos5x+cos3x) equal to?

    Text Solution

    |

  15. If sinx=(1)/(sqrt5).siny=(1)/(sqrt(10)), where 0 lt x lt (pi)/(2),0 lt...

    Text Solution

    |

  16. The value of tan 9^@ - tan 27^@ - tan 63^@ + tan 81^@ is equal to:

    Text Solution

    |

  17. The value of sqrt3 cosec20^@-sec20^@ is equal to:

    Text Solution

    |

  18. Angle a is divided into two parts A and B such that A - B = x and tan ...

    Text Solution

    |

  19. sqrt(1+sinA)=-(sin(A/2)+cos (A/2)) is true if :

    Text Solution

    |

  20. If sin A = 3/5, where 450^@ lt A lt 540^@, then cos A/2 is equal to:

    Text Solution

    |