Home
Class 14
MATHS
Suppose cos A is given. If only one valu...

Suppose cos A is given. If only one value of cos `(A/2)` is possible, then A must be:

A

An odd multiple of `90^@`

B

A multiple of `90^@`

C

An odd multiple of `180^@`

D

A multiple of `180^@`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the conditions under which only one value of \( \cos\left(\frac{A}{2}\right) \) is possible given \( \cos A \). ### Step-by-Step Solution: 1. **Understanding the Range of Cosine Function**: The cosine function \( \cos A \) can take values from -1 to 1. The half-angle formula states that: \[ \cos\left(\frac{A}{2}\right) = \sqrt{\frac{1 + \cos A}{2}} \quad \text{or} \quad \cos\left(\frac{A}{2}\right) = -\sqrt{\frac{1 + \cos A}{2}} \] This means that for each angle \( A \), there can be two possible values for \( \cos\left(\frac{A}{2}\right) \). 2. **Condition for a Unique Value**: For \( \cos\left(\frac{A}{2}\right) \) to have only one value, the expression \( \frac{1 + \cos A}{2} \) must equal 0. This occurs when: \[ 1 + \cos A = 0 \implies \cos A = -1 \] 3. **Finding the Corresponding Angle A**: The cosine of an angle is -1 at specific angles. The general solution for \( \cos A = -1 \) is: \[ A = (2n + 1) \cdot 180^\circ \quad \text{for any integer } n \] This means that \( A \) must be an odd multiple of \( 180^\circ \). 4. **Conclusion**: Therefore, if only one value of \( \cos\left(\frac{A}{2}\right) \) is possible, \( A \) must be an odd multiple of \( 180^\circ \). ### Final Answer: The correct option is: **Option 3: An odd multiple of 180 degrees.**
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos
  • STATISTICS

    PUNEET DOGRA|Exercise PRE YEAR QUESTIONS |163 Videos
  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos

Similar Questions

Explore conceptually related problems

suppose cosA is given if only one value of cos(A/2) is possible then A is must be

The value of cos(2cos^(-1)0.8) is

The average value of cos^2(phi/2) in one cycle is

The value of 2 cos x - cos 3x - cos 5x is

PUNEET DOGRA-TRIGONOMETRY-PREV YEAR QUESTIONS
  1. The maximum value of sin(x+pi/5)+cos(x+pi/5),where x epsilon (0,pi/...

    Text Solution

    |

  2. If cos alpha + cos beta + cos gamma = 0, where 0 lt alpha le (pi)/(2),...

    Text Solution

    |

  3. Suppose cos A is given. If only one value of cos (A/2) is possible, th...

    Text Solution

    |

  4. If sin alpha + sin beta = 0 = cos alpha + cos beta. Where 0 lt beta lt...

    Text Solution

    |

  5. (sin(x+y))/(sin(x-y))=(a+b)/(a-b), then (tanx)/(tany)=?

    Text Solution

    |

  6. What is sin 105^@ + cos105^@ equal to:

    Text Solution

    |

  7. What is (sin5x-sin3x)/(cos5x+cos3x) equal to?

    Text Solution

    |

  8. If sinx=(1)/(sqrt5).siny=(1)/(sqrt(10)), where 0 lt x lt (pi)/(2),0 lt...

    Text Solution

    |

  9. The value of tan 9^@ - tan 27^@ - tan 63^@ + tan 81^@ is equal to:

    Text Solution

    |

  10. The value of sqrt3 cosec20^@-sec20^@ is equal to:

    Text Solution

    |

  11. Angle a is divided into two parts A and B such that A - B = x and tan ...

    Text Solution

    |

  12. sqrt(1+sinA)=-(sin(A/2)+cos (A/2)) is true if :

    Text Solution

    |

  13. If sin A = 3/5, where 450^@ lt A lt 540^@, then cos A/2 is equal to:

    Text Solution

    |

  14. The expression (sin alpha+ sin beta)/(cos alpha+cos beta) is equal to:

    Text Solution

    |

  15. What is the value of tan18^(@) ?

    Text Solution

    |

  16. If tan (alpha + beta) = 2 and tan (alpha - beta) = 1, then tan (2alpha...

    Text Solution

    |

  17. 1/ (si n1 0^(@)) -(sqrt(3))/ (cos1 0^(@))=

    Text Solution

    |

  18. Maximum value of sin (x + (pi)/(6)) + cos (x + (pi)/(6)) is

    Text Solution

    |

  19. If K=sin(pi/(18))sin((5pi)/(18))sin((7pi)/(18)), then the numerical va...

    Text Solution

    |

  20. If sintheta=3sin(theta+2alpha), then the value of tan(theta+alpha)+2...

    Text Solution

    |