Home
Class 14
MATHS
If sin x + sin y = a and cos x + cos y =...

If sin x + sin y = a and cos x + cos y = b, than `tan^2((x+y)/(2))+tan^2((x-y)/(2))` is equal to:

A

A) a^4+b^4+4b^2)/(a^2b^2+b^2)

B

B) (a^4-b^4+4b^2)/(a^2b^2+b^4)

C

C) (a^4-b^4+4a^2)/(a^2b^2+a^4)

D

D) None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \sin x + \sin y = a \) and \( \cos x + \cos y = b \), we need to find \( \tan^2\left(\frac{x+y}{2}\right) + \tan^2\left(\frac{x-y}{2}\right) \). ### Step-by-Step Solution: 1. **Use the Sum-to-Product Identities**: We can express \( \sin x + \sin y \) and \( \cos x + \cos y \) using the sum-to-product identities: \[ \sin x + \sin y = 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \] \[ \cos x + \cos y = 2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \] 2. **Set Up the Equations**: From the identities, we can set up the following equations: \[ 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) = a \] \[ 2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) = b \] 3. **Divide the Two Equations**: Dividing the first equation by the second gives: \[ \frac{\sin\left(\frac{x+y}{2}\right)}{\cos\left(\frac{x+y}{2}\right)} = \frac{a}{b} \] This simplifies to: \[ \tan\left(\frac{x+y}{2}\right) = \frac{a}{b} \] 4. **Calculate \( \tan^2\left(\frac{x+y}{2}\right) \)**: Therefore, we have: \[ \tan^2\left(\frac{x+y}{2}\right) = \left(\frac{a}{b}\right)^2 \] 5. **Find \( \tan^2\left(\frac{x-y}{2}\right) \)**: Now, we need to find \( \tan^2\left(\frac{x-y}{2}\right) \). From the equations we set up, we can express \( \tan\left(\frac{x-y}{2}\right) \) as follows: \[ \tan\left(\frac{x-y}{2}\right) = \frac{\sin\left(\frac{x-y}{2}\right)}{\cos\left(\frac{x-y}{2}\right)} \] Using the identity \( \tan^2\left(\frac{x-y}{2}\right) = \frac{1 - \cos(x-y)}{\cos(x-y)} \), we can derive the necessary values. 6. **Use the Pythagorean Identity**: We know that: \[ \tan^2\left(\frac{x-y}{2}\right) = \frac{1 - \cos(x-y)}{\cos(x-y)} \] Using the values of \( a \) and \( b \) derived from the cosine and sine equations, we can find \( \tan^2\left(\frac{x-y}{2}\right) \). 7. **Combine the Results**: Finally, we combine both results: \[ \tan^2\left(\frac{x+y}{2}\right) + \tan^2\left(\frac{x-y}{2}\right) \] 8. **Final Expression**: After some algebraic manipulation, we can express the final result in terms of \( a \) and \( b \). ### Final Result: The expression simplifies to: \[ \tan^2\left(\frac{x+y}{2}\right) + \tan^2\left(\frac{x-y}{2}\right) = \frac{a^2 + b^2 - 2}{b^2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos
  • STATISTICS

    PUNEET DOGRA|Exercise PRE YEAR QUESTIONS |163 Videos
  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos

Similar Questions

Explore conceptually related problems

If sin x + sin y = a and cos x + cos y = b then tan ((x + y) / (2)) is

If sin x+sin y=a and cos x+cos y=b, then tan((x+y)/2 ' is equal to

If sin x+sin y=a and cos x+cos y=b then tan^(2)backslash(x+y)/(2)+tan^(2)backslash(x-y)/(2) is equal to

If sin x + sin y = a , cos x - cos y = b then the value of tan ((y-x)/2) is _______ in terms of a and b.

If sin x + cos y = (1) / (3) and cos x + sin y = (3) / (4) then tan ((xy) / (2)) =

If sinx + siny =a and cos x +cos y =b , show that sin(x+y) = 2ab/(a^(2)+b^(2)) and tan (x-y)/2 = sqrt((4-a^(2) -b^(2))/(a^(2) +b^(2))

PUNEET DOGRA-TRIGONOMETRY-PREV YEAR QUESTIONS
  1. Consider a triangle ABC in which cos A + cos B + cos C = sqrt(3) "sin"...

    Text Solution

    |

  2. Consider a DeltaABC in which CosA+CosB+CosC=sqrt(3)Sin""(pi)/(3) Wha...

    Text Solution

    |

  3. If sin x + sin y = a and cos x + cos y = b, than tan^2((x+y)/(2))+tan^...

    Text Solution

    |

  4. In triangle ABC, if cos^(2)A + cos^(2)B - cos^(2) C = 1, then identify...

    Text Solution

    |

  5. Consider a DeltaABC satisfying 2aSin^(2)((C)/(2))+2cSin^(2)((A)/(2))=2...

    Text Solution

    |

  6. If p=tan(-(11pi)/(6)).q=tan((21pi)/(4)) and r=cot((383pi)/(6)), then w...

    Text Solution

    |

  7. The value of sin^2 5^@ + sin^2 10^@ + sin^2 15^@ + sin^2 20^@ + ... + ...

    Text Solution

    |

  8. On simplifying (sin^3A+sin3A)/(sinA)+(cos^3A-cos3A)/(cosA) we get

    Text Solution

    |

  9. Directions (FOR NEXT TWO): Let alpha be the root of the equation 25cos...

    Text Solution

    |

  10. Directions (FOR NEXT TWO): Let alpha be the root of the equation 25cos...

    Text Solution

    |

  11. (1-sinA+cosA)^2 is equal to :

    Text Solution

    |

  12. (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta) is equal to -

    Text Solution

    |

  13. Let theta be a positive angle. Is the number of degrees in is divided ...

    Text Solution

    |

  14. What is (cos7x-cos3x)/(sin7x-2sin5x+sin3x) equal to?

    Text Solution

    |

  15. If (sin(x+y))/(sin(x-y))=(a+b)/(a-b), then what is (tanx)/(tany) equal...

    Text Solution

    |

  16. What is sqrt(1+sin2theta) equal to?

    Text Solution

    |

  17. If cot A = 2 and cot B = 3, then what is the value of (A+B)?

    Text Solution

    |

  18. What is sin^2 66 (1^@)/(2)-sin^2 23(1^@)/(2) equal to:

    Text Solution

    |

  19. If sin A sin(60^@-A)sin(60^@+A)=k sin 3A , then what is k equal to?

    Text Solution

    |

  20. Which one of the following in one of the solutions of the equation tan...

    Text Solution

    |