Home
Class 14
MATHS
If the perimeter of a triangle ABC is 30...

If the perimeter of a triangle ABC is 30cm, then what is the value of a `cos^(2)(C//2)+c cos^(2)(A//2)`?

A

15cm

B

10 cm

C

`(15)/(2)` cm

D

13 cm

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( A \cos^2\left(\frac{C}{2}\right) + C \cos^2\left(\frac{A}{2}\right) \) given that the perimeter of triangle ABC is 30 cm. ### Step-by-Step Solution: 1. **Understanding the Perimeter**: The perimeter of triangle ABC is given by: \[ A + B + C = 30 \text{ cm} \] where \( A \), \( B \), and \( C \) are the lengths of the sides opposite to angles \( A \), \( B \), and \( C \) respectively. 2. **Finding the Semi-Perimeter**: The semi-perimeter \( s \) of the triangle is given by: \[ s = \frac{A + B + C}{2} = \frac{30}{2} = 15 \text{ cm} \] 3. **Using the Cosine Half-Angle Formulas**: We know the formulas for \( \cos\left(\frac{A}{2}\right) \) and \( \cos\left(\frac{C}{2}\right) \): \[ \cos\left(\frac{A}{2}\right) = \sqrt{\frac{s(s - A)}{BC}} \] \[ \cos\left(\frac{C}{2}\right) = \sqrt{\frac{s(s - C)}{AB}} \] 4. **Calculating \( \cos^2\left(\frac{A}{2}\right) \) and \( \cos^2\left(\frac{C}{2}\right) \)**: We can express \( \cos^2\left(\frac{A}{2}\right) \) and \( \cos^2\left(\frac{C}{2}\right) \) as: \[ \cos^2\left(\frac{A}{2}\right) = \frac{s(s - A)}{BC} \] \[ \cos^2\left(\frac{C}{2}\right) = \frac{s(s - C)}{AB} \] 5. **Substituting into the Expression**: Now we substitute these into the expression we need to evaluate: \[ A \cos^2\left(\frac{C}{2}\right) + C \cos^2\left(\frac{A}{2}\right) = A \cdot \frac{s(s - C)}{AB} + C \cdot \frac{s(s - A)}{BC} \] 6. **Simplifying the Expression**: Since \( s = 15 \), we can substitute \( s \) into the equation: \[ = A \cdot \frac{15(15 - C)}{AB} + C \cdot \frac{15(15 - A)}{BC} \] However, we can also notice that \( A + B + C = 30 \) implies that \( B = 30 - A - C \). 7. **Final Calculation**: After substituting and simplifying, we find that the expression simplifies to a constant value. In this case, it can be shown that: \[ A \cos^2\left(\frac{C}{2}\right) + C \cos^2\left(\frac{A}{2}\right) = 15 \] ### Conclusion: Thus, the value of \( A \cos^2\left(\frac{C}{2}\right) + C \cos^2\left(\frac{A}{2}\right) \) is \( 15 \).
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|30 Videos
  • PROBABILITY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|159 Videos
  • QUADRATIC EQUATIONS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|103 Videos

Similar Questions

Explore conceptually related problems

If the perimeter of a triangle ABC is 30 cm, then what is the value of a cos^(2)(C//2)+ c cos^(2)(A//2) ?

If k be the perimeter of the triangle ABC, then b cos^(2)((C)/(2))+ccos^(2)((B)/(2)) is equal to

In triangle ABC,/_C=(2 pi)/(3) then the value of cos^(2)A+cos^(2)B-cos A*cos B is equal

In Delta ABC,b(cos^(2)C)/(2)+c(cos^(2)B)/(2)=

If a, b, c are the sides of a triangle ABC and |(1,a,b),(1,c,a),(1,b,c)|=0, then the value of cos^2 A + cos^2 B +cos^2 C is equal to

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

ABC is a right angled triangle with angleA=90^(@) .Then the value of cos^(2)A+cos^(2)B+cos^(2)C is :

In Delta ABC prove that 2(b cos^(2)((C)/(2))-c cos^(2)((B)/(2)))=a+b+c

In triangle ABC , prove that (1) a=b cos C+c cos B (2) b=a cos C+c cos A .

PUNEET DOGRA-PROPERTIES OF TRIANGLES -PREV YEAR QUESTION
  1. If the perimeter of a triangle ABC is 30cm, then what is the value of ...

    Text Solution

    |

  2. If the angles of a triangle ABC are in AP and b:c=sqrt3:sqrt2 the what...

    Text Solution

    |

  3. If the angles of a triangle ABC are in the ratio 1:2:3. then the corre...

    Text Solution

    |

  4. If (A+B+C)=180^(@), then what is Sin2A-Sin2B-Sin2C=

    Text Solution

    |

  5. ABC is a triangle inscribed in a circle with centre O Let alpha=angleB...

    Text Solution

    |

  6. In a DeltaABC. If a=2,b=3 and SinA=2//3 then what is value of angleB

    Text Solution

    |

  7. In a DeltaABC, If (Sin^(2)A+Sin^(2)B+Sin^(2)C)/(Cos^(2)A+Cos^(2)B+Cos^...

    Text Solution

    |

  8. In a DeltaABC,a-2b+c=0, then the value of Cot((A)/(2))Cot((C)/(2))

    Text Solution

    |

  9. Consider the following for triangle ABC I. Sin((B+C)/(2))=Cos((A)/(2...

    Text Solution

    |

  10. Consider a DeltaABC in which CosA+CosB+CosC=sqrt(3)Sin""(pi)/(3) Wha...

    Text Solution

    |

  11. Consider a DeltaABC in which CosA+CosB+CosC=sqrt(3)Sin""(pi)/(3) Wha...

    Text Solution

    |

  12. Consider a DeltaABC satisfying 2aSin^(2)((C)/(2))+2cSin^(2)((A)/(2))=2...

    Text Solution

    |

  13. Consider a DeltaABC satisfying 2aSin^(2)((C)/(2))+2cSin^(2)((A)/(2))=2...

    Text Solution

    |

  14. If in a triangle ABC, a=1+sqrt(3)cm,b=2 cm and angleC=60^(@) , then fi...

    Text Solution

    |

  15. In a DeltaABC, if a = 5, B=45^(@) and c=2sqrt(2), then b=

    Text Solution

    |

  16. Consider the following statements: I. There exists no DeltaABC for ...

    Text Solution

    |

  17. If the angles of a triangle are 30^(@) and 45^(@), and the included si...

    Text Solution

    |

  18. In any DeltaABC.a=18,b=24 and c=30, then what is SinC equal?

    Text Solution

    |

  19. The angles of a triangle are in AP and the least angle is 30^(@). What...

    Text Solution

    |

  20. In DeltaABC, if the angles A.B.C are in AP, which one of the following...

    Text Solution

    |

  21. If the sides of a triangle are 6cm, 10cm and 14cm, then what is the la...

    Text Solution

    |