Home
Class 14
MATHS
ABC is a triangle in which AB = 6cm, BC ...

ABC is a triangle in which AB = 6cm, BC = 8 cm and CA = 10 cm. What is the value of cot (A/4)?

A

`sqrt5-2`

B

`sqrt5+2`

C

`sqrt3-1`

D

`sqrt3+1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cot \left( \frac{A}{4} \right) \) for triangle ABC, where the sides are given as \( AB = 6 \, \text{cm} \), \( BC = 8 \, \text{cm} \), and \( CA = 10 \, \text{cm} \). ### Step 1: Identify the sides of the triangle Let: - \( a = BC = 8 \, \text{cm} \) - \( b = CA = 10 \, \text{cm} \) - \( c = AB = 6 \, \text{cm} \) ### Step 2: Calculate the semi-perimeter (s) Using the formula for the semi-perimeter: \[ s = \frac{a + b + c}{2} \] Substituting the values: \[ s = \frac{8 + 10 + 6}{2} = \frac{24}{2} = 12 \, \text{cm} \] ### Step 3: Apply Heron's formula to find the area (K) of the triangle Using Heron's formula: \[ K = \sqrt{s(s-a)(s-b)(s-c)} \] Substituting the values: \[ K = \sqrt{12(12-8)(12-10)(12-6)} = \sqrt{12 \times 4 \times 2 \times 6} \] Calculating further: \[ K = \sqrt{12 \times 4 \times 2 \times 6} = \sqrt{576} = 24 \, \text{cm}^2 \] ### Step 4: Use the area to find \( \sin A \) Using the formula for the area of a triangle: \[ K = \frac{1}{2}ab \sin A \] Substituting the values: \[ 24 = \frac{1}{2} \times 10 \times 6 \sin A \] This simplifies to: \[ 24 = 30 \sin A \implies \sin A = \frac{24}{30} = \frac{4}{5} \] ### Step 5: Find \( \cos A \) Using the identity \( \sin^2 A + \cos^2 A = 1 \): \[ \cos^2 A = 1 - \sin^2 A = 1 - \left(\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{9}{25} \] Thus, \( \cos A = \frac{3}{5} \). ### Step 6: Calculate \( \cot A \) Using the definition of cotangent: \[ \cot A = \frac{\cos A}{\sin A} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} \] ### Step 7: Use the cotangent double angle formula to find \( \cot \left( \frac{A}{2} \right) \) Using the formula: \[ \cot \left( \frac{A}{2} \right) = \frac{1 + \cot^2 A}{2 \cot A} \] Substituting the value of \( \cot A \): \[ \cot \left( \frac{A}{2} \right) = \frac{1 + \left(\frac{3}{4}\right)^2}{2 \times \frac{3}{4}} = \frac{1 + \frac{9}{16}}{\frac{3}{2}} = \frac{\frac{25}{16}}{\frac{3}{2}} = \frac{25}{16} \times \frac{2}{3} = \frac{50}{48} = \frac{25}{24} \] ### Step 8: Use the cotangent half angle formula to find \( \cot \left( \frac{A}{4} \right) \) Using the formula: \[ \cot \left( \frac{A}{4} \right) = \sqrt{\frac{1 + \cot^2 \left( \frac{A}{2} \right)}{1 - \cot^2 \left( \frac{A}{2} \right)}} \] Substituting the value of \( \cot \left( \frac{A}{2} \right) \): \[ \cot \left( \frac{A}{4} \right) = \sqrt{\frac{1 + \left(\frac{25}{24}\right)^2}{1 - \left(\frac{25}{24}\right)^2}} \] Calculating \( \left(\frac{25}{24}\right)^2 = \frac{625}{576} \): \[ \cot \left( \frac{A}{4} \right) = \sqrt{\frac{1 + \frac{625}{576}}{1 - \frac{625}{576}}} = \sqrt{\frac{\frac{1201}{576}}{\frac{-49}{576}}} = \sqrt{-\frac{1201}{49}} = \frac{\sqrt{1201}}{7} \] ### Final Answer Thus, the value of \( \cot \left( \frac{A}{4} \right) \) is: \[ \cot \left( \frac{A}{4} \right) = \sqrt{5} + 2 \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|30 Videos
  • PROBABILITY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|159 Videos
  • QUADRATIC EQUATIONS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|103 Videos

Similar Questions

Explore conceptually related problems

ABC is a triangle is which AB = 6 cm, BC = 8 cm and CA = 10 cm. What is the value of cot(A/4) ?

ABC is a triangle in which AB=6cm,BC=8cm and CA=10cm. What is the value of cot(A/4)?

ABC is a triangle in which BC = 10 cm, CA = 6 cm and AB = 8 cm. Which one of the following is correct ?

ABC is a triangle in which BC = 10 cm, CA = 6 cm and AB = 8 cm, Which one of the following is a correct?

Can we construct a triangle ABC in which AB=3 cm, BC=4 cm and AC=8 cm ?

If D and E are respectively the midpoints of the sides AB and BC of triangle ABC in which AB = 7.2 cm, BC = 9.8 cm and AC = 3.6 cm then determine the length of DE.

ABC is a right angled triangle AB = 3 cm, BC = 5 cm and AC = 4 cm, then the inradius of the circle is :

ABC is a right angled triangle AB = 3 cm, BC = 5 cm and AC = 4 cm, then the inradius of the circle is :

In triangle ABC , AB = 6 cm, AC = 8 cm, and BC = 9 cm. The length of median AD is:

PUNEET DOGRA-PROPERTIES OF TRIANGLES -PREV YEAR QUESTION
  1. ABC is a triangle in which AB = 6cm, BC = 8 cm and CA = 10 cm. What is...

    Text Solution

    |

  2. If the angles of a triangle ABC are in AP and b:c=sqrt3:sqrt2 the what...

    Text Solution

    |

  3. If the angles of a triangle ABC are in the ratio 1:2:3. then the corre...

    Text Solution

    |

  4. If (A+B+C)=180^(@), then what is Sin2A-Sin2B-Sin2C=

    Text Solution

    |

  5. ABC is a triangle inscribed in a circle with centre O Let alpha=angleB...

    Text Solution

    |

  6. In a DeltaABC. If a=2,b=3 and SinA=2//3 then what is value of angleB

    Text Solution

    |

  7. In a DeltaABC, If (Sin^(2)A+Sin^(2)B+Sin^(2)C)/(Cos^(2)A+Cos^(2)B+Cos^...

    Text Solution

    |

  8. In a DeltaABC,a-2b+c=0, then the value of Cot((A)/(2))Cot((C)/(2))

    Text Solution

    |

  9. Consider the following for triangle ABC I. Sin((B+C)/(2))=Cos((A)/(2...

    Text Solution

    |

  10. Consider a DeltaABC in which CosA+CosB+CosC=sqrt(3)Sin""(pi)/(3) Wha...

    Text Solution

    |

  11. Consider a DeltaABC in which CosA+CosB+CosC=sqrt(3)Sin""(pi)/(3) Wha...

    Text Solution

    |

  12. Consider a DeltaABC satisfying 2aSin^(2)((C)/(2))+2cSin^(2)((A)/(2))=2...

    Text Solution

    |

  13. Consider a DeltaABC satisfying 2aSin^(2)((C)/(2))+2cSin^(2)((A)/(2))=2...

    Text Solution

    |

  14. If in a triangle ABC, a=1+sqrt(3)cm,b=2 cm and angleC=60^(@) , then fi...

    Text Solution

    |

  15. In a DeltaABC, if a = 5, B=45^(@) and c=2sqrt(2), then b=

    Text Solution

    |

  16. Consider the following statements: I. There exists no DeltaABC for ...

    Text Solution

    |

  17. If the angles of a triangle are 30^(@) and 45^(@), and the included si...

    Text Solution

    |

  18. In any DeltaABC.a=18,b=24 and c=30, then what is SinC equal?

    Text Solution

    |

  19. The angles of a triangle are in AP and the least angle is 30^(@). What...

    Text Solution

    |

  20. In DeltaABC, if the angles A.B.C are in AP, which one of the following...

    Text Solution

    |

  21. If the sides of a triangle are 6cm, 10cm and 14cm, then what is the la...

    Text Solution

    |