Home
Class 14
MATHS
In a DeltaABC, If (Sin^(2)A+Sin^(2)B+Sin...

In a `DeltaABC`, If `(Sin^(2)A+Sin^(2)B+Sin^(2)C)/(Cos^(2)A+Cos^(2)B+Cos^(2)C)=2` then the triangle is

A

A) right angled

B

B) equilateral

C

C) isosceles

D

D) obtuse angled

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given expression and determine the type of triangle based on the provided condition. ### Step-by-Step Solution: 1. **Given Expression**: \[ \frac{\sin^2 A + \sin^2 B + \sin^2 C}{\cos^2 A + \cos^2 B + \cos^2 C} = 2 \] 2. **Cross Multiply**: \[ \sin^2 A + \sin^2 B + \sin^2 C = 2 (\cos^2 A + \cos^2 B + \cos^2 C) \] 3. **Use the Identity**: We know that for any angle \(X\): \[ \sin^2 X + \cos^2 X = 1 \] Therefore, we can express \(\sin^2 A\), \(\sin^2 B\), and \(\sin^2 C\) in terms of \(\cos^2 A\), \(\cos^2 B\), and \(\cos^2 C\): \[ \sin^2 A = 1 - \cos^2 A, \quad \sin^2 B = 1 - \cos^2 B, \quad \sin^2 C = 1 - \cos^2 C \] 4. **Substituting the Identities**: Substitute these into the equation: \[ (1 - \cos^2 A) + (1 - \cos^2 B) + (1 - \cos^2 C) = 2 (\cos^2 A + \cos^2 B + \cos^2 C) \] Simplifying this gives: \[ 3 - (\cos^2 A + \cos^2 B + \cos^2 C) = 2 (\cos^2 A + \cos^2 B + \cos^2 C) \] 5. **Rearranging the Equation**: Combine like terms: \[ 3 = 3 (\cos^2 A + \cos^2 B + \cos^2 C) \] Dividing both sides by 3: \[ 1 = \cos^2 A + \cos^2 B + \cos^2 C \] 6. **Using the Cosine Identity**: We can express \(\cos^2 A + \cos^2 B + \cos^2 C\) using the cosine double angle identity: \[ \cos^2 A = \frac{1 + \cos 2A}{2}, \quad \cos^2 B = \frac{1 + \cos 2B}{2}, \quad \cos^2 C = \frac{1 + \cos 2C}{2} \] Substituting these into the equation gives: \[ \frac{3 + \cos 2A + \cos 2B + \cos 2C}{2} = 1 \] 7. **Solving for Cosine Terms**: Multiply through by 2: \[ 3 + \cos 2A + \cos 2B + \cos 2C = 2 \] Rearranging gives: \[ \cos 2A + \cos 2B + \cos 2C = -1 \] 8. **Analyzing the Angles**: Since \(A + B + C = \pi\) in any triangle, we can express \(C\) as \(C = \pi - A - B\). Therefore, we can analyze the angles: \[ \cos 2C = \cos(2(\pi - A - B)) = -\cos(2A + 2B) \] This leads us to conclude that the angles must satisfy certain relationships. 9. **Conclusion**: Given that one of the angles must be \(90^\circ\) (as derived from the cosine relationships), we conclude that triangle \(ABC\) is a right triangle. ### Final Answer: The triangle is a **right triangle**.
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|30 Videos
  • PROBABILITY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|159 Videos
  • QUADRATIC EQUATIONS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|103 Videos

Similar Questions

Explore conceptually related problems

In Delta ABC If,(sin^(2)A+sin^(2)B+sin^(2)C)/(cos^(2)A+cos^(2)B+cos^(2)C)=2 Then the triangle is

In Delta ABC, if sin A+sin B+sin B+sin C=1+sqrt(2) and cos A+cos B+cos C=sqrt(2) then the triangle is

If in a DeltaABC, sin A =sin^(2) B and 2 cos ^(2)A=3 cos ^(2) B, then the DeltaABC is

Statement-1: In a triangle ABC, if sin^(2)A + sin^(2)B + sin^(2)C = 2 , then one of the angles must be 90 °. Statement-2: In any triangle ABC cos 2A + cos 2B + cos 2C = -1 - 4 cos A cos B cos C

In DeltaABC , prove that: sin^(2)A+sin^(2)B+sin^(2)C =1-cos^(2)A+sin^(2)B+1-cos^(2)C =2-cos(A+B)cos(A-B)-cos^(2)C =2-cos(180^(@)-C)cos(A-B)-cosC.coc{180^(@)-(A+B)} =2+cosC.cos(A-B)+cos(A+B)] =2+cosC.2cosAcosB =RHS Hence proved.

If a triangle ABC, sin A = sin^(2) B and 2 cos^(2)A = 3 cos^(2)B , then the Delta ABC is :

If A+B+C=pi, prove that sin^(2)A+sin^(2)B+sin^(2)C=2(1+cos A cos B cos C)

In DeltaABC,(a-b)^(2)cos^(2).(C)/(2)+(a+b)^(2)sin^(2).(C)/(2) =

PUNEET DOGRA-PROPERTIES OF TRIANGLES -PREV YEAR QUESTION
  1. ABC is a triangle inscribed in a circle with centre O Let alpha=angleB...

    Text Solution

    |

  2. In a DeltaABC. If a=2,b=3 and SinA=2//3 then what is value of angleB

    Text Solution

    |

  3. In a DeltaABC, If (Sin^(2)A+Sin^(2)B+Sin^(2)C)/(Cos^(2)A+Cos^(2)B+Cos^...

    Text Solution

    |

  4. In a DeltaABC,a-2b+c=0, then the value of Cot((A)/(2))Cot((C)/(2))

    Text Solution

    |

  5. Consider the following for triangle ABC I. Sin((B+C)/(2))=Cos((A)/(2...

    Text Solution

    |

  6. Consider a DeltaABC in which CosA+CosB+CosC=sqrt(3)Sin""(pi)/(3) Wha...

    Text Solution

    |

  7. Consider a DeltaABC in which CosA+CosB+CosC=sqrt(3)Sin""(pi)/(3) Wha...

    Text Solution

    |

  8. Consider a DeltaABC satisfying 2aSin^(2)((C)/(2))+2cSin^(2)((A)/(2))=2...

    Text Solution

    |

  9. Consider a DeltaABC satisfying 2aSin^(2)((C)/(2))+2cSin^(2)((A)/(2))=2...

    Text Solution

    |

  10. If in a triangle ABC, a=1+sqrt(3)cm,b=2 cm and angleC=60^(@) , then fi...

    Text Solution

    |

  11. In a DeltaABC, if a = 5, B=45^(@) and c=2sqrt(2), then b=

    Text Solution

    |

  12. Consider the following statements: I. There exists no DeltaABC for ...

    Text Solution

    |

  13. If the angles of a triangle are 30^(@) and 45^(@), and the included si...

    Text Solution

    |

  14. In any DeltaABC.a=18,b=24 and c=30, then what is SinC equal?

    Text Solution

    |

  15. The angles of a triangle are in AP and the least angle is 30^(@). What...

    Text Solution

    |

  16. In DeltaABC, if the angles A.B.C are in AP, which one of the following...

    Text Solution

    |

  17. If the sides of a triangle are 6cm, 10cm and 14cm, then what is the la...

    Text Solution

    |

  18. If sides of a triangle are in the ratio 2:sqrt6:1+sqrt3 the what is t...

    Text Solution

    |

  19. In a DeltaABC,a=8,b=10 and c=12. What is angleC equal?

    Text Solution

    |

  20. The sides a, b, c of a DeltaABC are in AP and 'a' is the smallest side...

    Text Solution

    |