Home
Class 14
MATHS
In a DeltaABC,a-2b+c=0, then the value o...

In a `DeltaABC,a-2b+c=0`, then the value of `Cot((A)/(2))Cot((C)/(2))`

A

A. `9//2`

B

B. 3

C

C. `3//2`

D

D. 1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cot\left(\frac{A}{2}\right) \cot\left(\frac{C}{2}\right) \) given that \( a - 2b + c = 0 \). ### Step-by-Step Solution: 1. **Rearranging the Given Equation**: From the equation \( a - 2b + c = 0 \), we can rearrange it to find a relationship between the sides: \[ a + c = 2b \] 2. **Using the Semi-Perimeter**: The semi-perimeter \( S \) of triangle \( ABC \) is given by: \[ S = \frac{a + b + c}{2} \] Substituting \( a + c = 2b \) into the semi-perimeter formula: \[ S = \frac{2b + b}{2} = \frac{3b}{2} \] 3. **Using the Cotangent Half-Angle Formula**: The cotangent half-angle formulas for a triangle are: \[ \cot\left(\frac{A}{2}\right) = \sqrt{\frac{S(S - a)}{(S - b)(S - c)}} \] \[ \cot\left(\frac{C}{2}\right) = \sqrt{\frac{S(S - c)}{(S - b)(S - a)}} \] 4. **Calculating \( S - a \), \( S - b \), and \( S - c \)**: From \( S = \frac{3b}{2} \): - \( S - a = \frac{3b}{2} - a \) - \( S - b = \frac{3b}{2} - b = \frac{b}{2} \) - \( S - c = \frac{3b}{2} - c \) 5. **Substituting into the Cotangent Formulas**: Now we can substitute these values into the cotangent formulas: \[ \cot\left(\frac{A}{2}\right) = \sqrt{\frac{\frac{3b}{2} \left(\frac{3b}{2} - a\right)}{\left(\frac{b}{2}\right) \left(\frac{3b}{2} - c\right)}} \] \[ \cot\left(\frac{C}{2}\right) = \sqrt{\frac{\frac{3b}{2} \left(\frac{3b}{2} - c\right)}{\left(\frac{b}{2}\right) \left(\frac{3b}{2} - a\right)}} \] 6. **Multiplying the Cotangent Values**: Now, we multiply \( \cot\left(\frac{A}{2}\right) \) and \( \cot\left(\frac{C}{2}\right) \): \[ \cot\left(\frac{A}{2}\right) \cot\left(\frac{C}{2}\right) = \sqrt{\frac{\frac{3b}{2} \left(\frac{3b}{2} - a\right)}{\left(\frac{b}{2}\right) \left(\frac{3b}{2} - c\right)}} \cdot \sqrt{\frac{\frac{3b}{2} \left(\frac{3b}{2} - c\right)}{\left(\frac{b}{2}\right) \left(\frac{3b}{2} - a\right)}} \] 7. **Simplifying the Expression**: After simplification, the terms \( \left(\frac{3b}{2} - a\right) \) and \( \left(\frac{3b}{2} - c\right) \) will cancel out, leading to: \[ \cot\left(\frac{A}{2}\right) \cot\left(\frac{C}{2}\right) = \frac{3b/2}{b/2} = 3 \] ### Final Answer: Thus, the value of \( \cot\left(\frac{A}{2}\right) \cot\left(\frac{C}{2}\right) \) is \( 3 \).
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|30 Videos
  • PROBABILITY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|159 Videos
  • QUADRATIC EQUATIONS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|103 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC,a-2b+c=0. The value of cot((A)/(2))cot((C)/(2)) is

In a triangle ABC if b+c=3a then find the value of cot((B)/(2))cot((C)/(2))

In a DeltaABC, "the value of"cot""(A)/(2)cot""(B)/(2)cot""(C)/(2)is

If A+B+C=180^(@) , then the value of cot.(A)/(2)+cot.(B)/(2)+cot.(C)/(2) will be

In any Delta ABC, prove that cot((A)/(2))+cot((B)/(2))+cot((C)/(2))=(a+b+c)/(b+c-a)cot((A)/(2))

If A, B and C are interior angles of a DeltaABC , then show that cot((B+C)/(2))=tan((A)/(2)) .

In any Delta ABC, porve that (a+b-c)cot((B)/(2))=(a-b+c)cot((C)/(2))

In DeltaABC , if (sinA)/(3)=(cosB)/(3)=(tanC)/(2) , then the value of ((sinA)/(cot2A)+(cosB)/(cot2B)+(tan C)/(cot 2 C)) is

PUNEET DOGRA-PROPERTIES OF TRIANGLES -PREV YEAR QUESTION
  1. In a DeltaABC. If a=2,b=3 and SinA=2//3 then what is value of angleB

    Text Solution

    |

  2. In a DeltaABC, If (Sin^(2)A+Sin^(2)B+Sin^(2)C)/(Cos^(2)A+Cos^(2)B+Cos^...

    Text Solution

    |

  3. In a DeltaABC,a-2b+c=0, then the value of Cot((A)/(2))Cot((C)/(2))

    Text Solution

    |

  4. Consider the following for triangle ABC I. Sin((B+C)/(2))=Cos((A)/(2...

    Text Solution

    |

  5. Consider a DeltaABC in which CosA+CosB+CosC=sqrt(3)Sin""(pi)/(3) Wha...

    Text Solution

    |

  6. Consider a DeltaABC in which CosA+CosB+CosC=sqrt(3)Sin""(pi)/(3) Wha...

    Text Solution

    |

  7. Consider a DeltaABC satisfying 2aSin^(2)((C)/(2))+2cSin^(2)((A)/(2))=2...

    Text Solution

    |

  8. Consider a DeltaABC satisfying 2aSin^(2)((C)/(2))+2cSin^(2)((A)/(2))=2...

    Text Solution

    |

  9. If in a triangle ABC, a=1+sqrt(3)cm,b=2 cm and angleC=60^(@) , then fi...

    Text Solution

    |

  10. In a DeltaABC, if a = 5, B=45^(@) and c=2sqrt(2), then b=

    Text Solution

    |

  11. Consider the following statements: I. There exists no DeltaABC for ...

    Text Solution

    |

  12. If the angles of a triangle are 30^(@) and 45^(@), and the included si...

    Text Solution

    |

  13. In any DeltaABC.a=18,b=24 and c=30, then what is SinC equal?

    Text Solution

    |

  14. The angles of a triangle are in AP and the least angle is 30^(@). What...

    Text Solution

    |

  15. In DeltaABC, if the angles A.B.C are in AP, which one of the following...

    Text Solution

    |

  16. If the sides of a triangle are 6cm, 10cm and 14cm, then what is the la...

    Text Solution

    |

  17. If sides of a triangle are in the ratio 2:sqrt6:1+sqrt3 the what is t...

    Text Solution

    |

  18. In a DeltaABC,a=8,b=10 and c=12. What is angleC equal?

    Text Solution

    |

  19. The sides a, b, c of a DeltaABC are in AP and 'a' is the smallest side...

    Text Solution

    |

  20. In a triangle ABC, if c=2, A=120^(@) and a=c then what is angle C equa...

    Text Solution

    |