Home
Class 14
MATHS
Consider the following for triangle ABC ...

Consider the following for triangle ABC
I. `Sin((B+C)/(2))=Cos((A)/(2))`
II. `tan((B+C)/(2))=Cot((A)/(2))`
III. `Sin (b+c) = Cos A`
IV. `tan(B+C)=-CotA`
Which of the above ar correct?

A

I and III

B

I and II

C

I and IV

D

II and III

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the statements for triangle ABC are correct, we will analyze each statement step by step. ### Step 1: Analyze Statement I **Statement I:** \( \sin\left(\frac{B+C}{2}\right) = \cos\left(\frac{A}{2}\right) \) Using the property of angles in a triangle, we know that \( B + C = 180^\circ - A \). Therefore, we can rewrite the left side: \[ \frac{B+C}{2} = \frac{180^\circ - A}{2} = 90^\circ - \frac{A}{2} \] Thus, \[ \sin\left(\frac{B+C}{2}\right) = \sin\left(90^\circ - \frac{A}{2}\right) = \cos\left(\frac{A}{2}\right) \] This confirms that Statement I is **true**. ### Step 2: Analyze Statement II **Statement II:** \( \tan\left(\frac{B+C}{2}\right) = \cot\left(\frac{A}{2}\right) \) From the previous calculation, we have: \[ \frac{B+C}{2} = 90^\circ - \frac{A}{2} \] Thus, \[ \tan\left(\frac{B+C}{2}\right) = \tan\left(90^\circ - \frac{A}{2}\right) = \cot\left(\frac{A}{2}\right) \] This confirms that Statement II is also **true**. ### Step 3: Analyze Statement III **Statement III:** \( \sin(B+C) = \cos A \) We know that \( B + C = 180^\circ - A \), so: \[ \sin(B+C) = \sin(180^\circ - A) = \sin A \] However, \( \cos A \) is not equal to \( \sin A \) in general. Therefore, Statement III is **false**. ### Step 4: Analyze Statement IV **Statement IV:** \( \tan(B+C) = -\cot A \) Again, using \( B + C = 180^\circ - A \): \[ \tan(B+C) = \tan(180^\circ - A) = -\tan A \] And since \( \cot A = \frac{1}{\tan A} \), we have: \[ -\cot A = -\frac{1}{\tan A} \] Thus, Statement IV is also **false**. ### Conclusion The correct statements are: - Statement I: True - Statement II: True - Statement III: False - Statement IV: False Thus, the answer is **Option B: 1st and 2nd**.
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|30 Videos
  • PROBABILITY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|159 Videos
  • QUADRATIC EQUATIONS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|103 Videos

Similar Questions

Explore conceptually related problems

Consider the following for triangle ABC : 1. sin((B+C)/(2))=cos((A)/(2)) 2. tan((B+C)/(2))=cot((A)/(2)) 3. sin (B + C) = cos A 4. tan(B + C) = -cot A Which of the above are correct ?

In any triangle ABC,show that: 2a cos((B)/(2))cos((C)/(2))=(a+b+c)sin((A)/(2))

cot ((A)/(2))-tan((A)/(2))= A) 2 sin A B) 2 cos A C) 2 tan A D) 2 cot A

In a triangle ABC, prove that (a)cos(A+B)+cos C=0(b)tan((A+B)/(2))=cot((C)/(2))

Which of the following is true in a triangle ABC?(1)(b+c)sin((B_(C))/(2))=2a cos((A)/(2))(2+c)cos((A)/(2))=2a sin((B-C)/(2))

In any triangle ABC, prove that: (b-c)/(b+c)=(tan((b-C)/(2)))/(tan((B+C)/(2)))

Show that in any triangle ABC,(a+b+c)(tan((A)/(2))+tan((B)/(2)))=2c cot((C)/(2))

If A,B,C are the interior angles of a triangle ABC, prove that tan((C+A)/(2))=(cot B)/(2)( ii) sin((B+C)/(2))=(cos A)/(2)

Prove that in triangle ABC “tan”(B-C)/2=(b-c)/(b+c)”cot” A/2

Show that, in a triangle ABC. a^(2) = (b - c)^(2) cos^(2) (A/2) + (b + c)^(2) sin^(2) (A/2) .

PUNEET DOGRA-PROPERTIES OF TRIANGLES -PREV YEAR QUESTION
  1. In a DeltaABC, If (Sin^(2)A+Sin^(2)B+Sin^(2)C)/(Cos^(2)A+Cos^(2)B+Cos^...

    Text Solution

    |

  2. In a DeltaABC,a-2b+c=0, then the value of Cot((A)/(2))Cot((C)/(2))

    Text Solution

    |

  3. Consider the following for triangle ABC I. Sin((B+C)/(2))=Cos((A)/(2...

    Text Solution

    |

  4. Consider a DeltaABC in which CosA+CosB+CosC=sqrt(3)Sin""(pi)/(3) Wha...

    Text Solution

    |

  5. Consider a DeltaABC in which CosA+CosB+CosC=sqrt(3)Sin""(pi)/(3) Wha...

    Text Solution

    |

  6. Consider a DeltaABC satisfying 2aSin^(2)((C)/(2))+2cSin^(2)((A)/(2))=2...

    Text Solution

    |

  7. Consider a DeltaABC satisfying 2aSin^(2)((C)/(2))+2cSin^(2)((A)/(2))=2...

    Text Solution

    |

  8. If in a triangle ABC, a=1+sqrt(3)cm,b=2 cm and angleC=60^(@) , then fi...

    Text Solution

    |

  9. In a DeltaABC, if a = 5, B=45^(@) and c=2sqrt(2), then b=

    Text Solution

    |

  10. Consider the following statements: I. There exists no DeltaABC for ...

    Text Solution

    |

  11. If the angles of a triangle are 30^(@) and 45^(@), and the included si...

    Text Solution

    |

  12. In any DeltaABC.a=18,b=24 and c=30, then what is SinC equal?

    Text Solution

    |

  13. The angles of a triangle are in AP and the least angle is 30^(@). What...

    Text Solution

    |

  14. In DeltaABC, if the angles A.B.C are in AP, which one of the following...

    Text Solution

    |

  15. If the sides of a triangle are 6cm, 10cm and 14cm, then what is the la...

    Text Solution

    |

  16. If sides of a triangle are in the ratio 2:sqrt6:1+sqrt3 the what is t...

    Text Solution

    |

  17. In a DeltaABC,a=8,b=10 and c=12. What is angleC equal?

    Text Solution

    |

  18. The sides a, b, c of a DeltaABC are in AP and 'a' is the smallest side...

    Text Solution

    |

  19. In a triangle ABC, if c=2, A=120^(@) and a=c then what is angle C equa...

    Text Solution

    |

  20. ABC is a triangle right angled at B. The hypotenuse (AC) is four times...

    Text Solution

    |