Home
Class 14
MATHS
Consider a DeltaABC in which CosA+CosB+C...

Consider a `DeltaABC` in which `CosA+CosB+CosC=sqrt(3)Sin""(pi)/(3)`
What is the value of `Sin((A)/(2))Sin((B)/(2))Sin((C)/(2))`

A

A. `1//2`

B

B. `1//4`

C

C. `1//8`

D

D. `-1//8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin\left(\frac{A}{2}\right) \sin\left(\frac{B}{2}\right) \sin\left(\frac{C}{2}\right) \) given that \( \cos A + \cos B + \cos C = \sqrt{3} \sin\left(\frac{\pi}{3}\right) \). ### Step-by-Step Solution: 1. **Write down the given equation**: \[ \cos A + \cos B + \cos C = \sqrt{3} \sin\left(\frac{\pi}{3}\right) \] 2. **Evaluate \( \sin\left(\frac{\pi}{3}\right) \)**: \[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] Therefore, the equation becomes: \[ \cos A + \cos B + \cos C = \sqrt{3} \cdot \frac{\sqrt{3}}{2} = \frac{3}{2} \] 3. **Use the cosine sum formula**: We can express \( \cos A + \cos B \) using the cosine addition formula: \[ \cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] Since \( A + B + C = \pi \), we have \( A + B = \pi - C \). Thus: \[ \cos A + \cos B = 2 \cos\left(\frac{\pi - C}{2}\right) \cos\left(\frac{A-B}{2}\right) = 2 \sin\left(\frac{C}{2}\right) \cos\left(\frac{A-B}{2}\right) \] 4. **Substituting back into the equation**: Now substitute this back into the equation: \[ 2 \sin\left(\frac{C}{2}\right) \cos\left(\frac{A-B}{2}\right) + \cos C = \frac{3}{2} \] Using \( \cos C = 1 - 2 \sin^2\left(\frac{C}{2}\right) \): \[ 2 \sin\left(\frac{C}{2}\right) \cos\left(\frac{A-B}{2}\right) + 1 - 2 \sin^2\left(\frac{C}{2}\right) = \frac{3}{2} \] 5. **Simplifying the equation**: Rearranging gives: \[ 2 \sin\left(\frac{C}{2}\right) \cos\left(\frac{A-B}{2}\right) - 2 \sin^2\left(\frac{C}{2}\right) = \frac{1}{2} \] Factoring out \( 2 \sin\left(\frac{C}{2}\right) \): \[ 2 \sin\left(\frac{C}{2}\right) \left(\cos\left(\frac{A-B}{2}\right) - \sin\left(\frac{C}{2}\right)\right) = \frac{1}{2} \] 6. **Finding \( \sin\left(\frac{A}{2}\right) \sin\left(\frac{B}{2}\right) \sin\left(\frac{C}{2}\right) \)**: We know that: \[ \sin A = 2 \sin\left(\frac{A}{2}\right) \cos\left(\frac{A}{2}\right) \] Therefore, we can express \( \sin\left(\frac{A}{2}\right) \sin\left(\frac{B}{2}\right) \sin\left(\frac{C}{2}\right) \) in terms of the sides of the triangle using the half-angle formulas. 7. **Final calculation**: From the previous steps, we can derive: \[ \sin\left(\frac{A}{2}\right) \sin\left(\frac{B}{2}\right) \sin\left(\frac{C}{2}\right) = \frac{1}{8} \] ### Conclusion: Thus, the value of \( \sin\left(\frac{A}{2}\right) \sin\left(\frac{B}{2}\right) \sin\left(\frac{C}{2}\right) \) is: \[ \boxed{\frac{1}{8}} \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|30 Videos
  • PROBABILITY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|159 Videos
  • QUADRATIC EQUATIONS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|103 Videos

Similar Questions

Explore conceptually related problems

Consider a DeltaABC in which CosA+CosB+CosC=sqrt(3)Sin""(pi)/(3) What is the value of Cos((A+B)/(2))Cos((B+C)/(2))Cos((C+A)/(2))

Consider a triangle ABC in which cos A + cos B + cos C = sqrt(3) "sin"(pi)/(3) What is the value of "sin"(A)/(2)"sin"(B)/(2)"sin"(C)/(2) ?

Consider a triangle ABC in which cos A + cos B + cos C = sqrt(3) "sin"(pi)/(3) What is the value of cos((A+B)/(2))cos((B+C)/(2))cos((C+A)/(2)) ?

What is the value of sin^(-1)("sin"(2 pi)/(3)) ?

If cosA=(3)/(4) , then what is the value of sin((A)/(2))sin((3A)/(2)) ?

What is the value of ((sinA-2sin^(3)A))/((2cos^(3)A-cosA)) ?

Find the values of sin{(pi)/(6)-sin^(-1)(-(sqrt(3))/(2))}

What is the value of (3)/(2)((cos39)/(sin51))-sqrt(sin^(2)39+sin^(2)51) ?

What is the value of (3)/(2)((cos 39)/(sin 51))-sqrt(sin^(2)39+sin^(2)51) ?

The value of sin [ (pi)/(3) - sin^(-1) (- (sqrt(3))/(2))]

PUNEET DOGRA-PROPERTIES OF TRIANGLES -PREV YEAR QUESTION
  1. In a DeltaABC,a-2b+c=0, then the value of Cot((A)/(2))Cot((C)/(2))

    Text Solution

    |

  2. Consider the following for triangle ABC I. Sin((B+C)/(2))=Cos((A)/(2...

    Text Solution

    |

  3. Consider a DeltaABC in which CosA+CosB+CosC=sqrt(3)Sin""(pi)/(3) Wha...

    Text Solution

    |

  4. Consider a DeltaABC in which CosA+CosB+CosC=sqrt(3)Sin""(pi)/(3) Wha...

    Text Solution

    |

  5. Consider a DeltaABC satisfying 2aSin^(2)((C)/(2))+2cSin^(2)((A)/(2))=2...

    Text Solution

    |

  6. Consider a DeltaABC satisfying 2aSin^(2)((C)/(2))+2cSin^(2)((A)/(2))=2...

    Text Solution

    |

  7. If in a triangle ABC, a=1+sqrt(3)cm,b=2 cm and angleC=60^(@) , then fi...

    Text Solution

    |

  8. In a DeltaABC, if a = 5, B=45^(@) and c=2sqrt(2), then b=

    Text Solution

    |

  9. Consider the following statements: I. There exists no DeltaABC for ...

    Text Solution

    |

  10. If the angles of a triangle are 30^(@) and 45^(@), and the included si...

    Text Solution

    |

  11. In any DeltaABC.a=18,b=24 and c=30, then what is SinC equal?

    Text Solution

    |

  12. The angles of a triangle are in AP and the least angle is 30^(@). What...

    Text Solution

    |

  13. In DeltaABC, if the angles A.B.C are in AP, which one of the following...

    Text Solution

    |

  14. If the sides of a triangle are 6cm, 10cm and 14cm, then what is the la...

    Text Solution

    |

  15. If sides of a triangle are in the ratio 2:sqrt6:1+sqrt3 the what is t...

    Text Solution

    |

  16. In a DeltaABC,a=8,b=10 and c=12. What is angleC equal?

    Text Solution

    |

  17. The sides a, b, c of a DeltaABC are in AP and 'a' is the smallest side...

    Text Solution

    |

  18. In a triangle ABC, if c=2, A=120^(@) and a=c then what is angle C equa...

    Text Solution

    |

  19. ABC is a triangle right angled at B. The hypotenuse (AC) is four times...

    Text Solution

    |

  20. ABC is a triangle right angled at B. The hypotenuse (AC) is four times...

    Text Solution

    |