Home
Class 14
MATHS
Consider a DeltaABC in which CosA+CosB+C...

Consider a `DeltaABC` in which `CosA+CosB+CosC=sqrt(3)Sin""(pi)/(3)`
What is the value of `Cos((A+B)/(2))Cos((B+C)/(2))Cos((C+A)/(2))`

A

A. `1//4`

B

B. `1//8`

C

C. `1//6`

D

D. None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{B+C}{2}\right) \cos\left(\frac{C+A}{2}\right) \) given that \( \cos A + \cos B + \cos C = \sqrt{3} \sin\left(\frac{\pi}{3}\right) \). ### Step-by-Step Solution: 1. **Understanding the Given Equation**: We start with the equation: \[ \cos A + \cos B + \cos C = \sqrt{3} \sin\left(\frac{\pi}{3}\right) \] We know that \( \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \). Therefore, we can rewrite the equation as: \[ \cos A + \cos B + \cos C = \sqrt{3} \cdot \frac{\sqrt{3}}{2} = \frac{3}{2} \] 2. **Using the Cosine Sum Formula**: We can express \( \cos A + \cos B \) using the cosine sum formula: \[ \cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] Thus, we can write: \[ 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) + \cos C = \frac{3}{2} \] 3. **Expressing \( \cos C \)**: Since \( C = 180^\circ - (A + B) \), we can express \( \cos C \) as: \[ \cos C = -\cos(A+B) \] However, we will use the identity \( \cos C = 1 - 2 \sin^2\left(\frac{C}{2}\right) \) later. 4. **Substituting \( \cos C \)**: For simplicity, we can rearrange the equation: \[ 2 \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) = \frac{3}{2} - \cos C \] 5. **Using the Triangle Angle Sum**: Since \( A + B + C = 180^\circ \), we can express \( C \) in terms of \( A \) and \( B \): \[ C = 180^\circ - A - B \] This will help in simplifying \( \cos C \). 6. **Finding the Product**: We need to find: \[ \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{B+C}{2}\right) \cos\left(\frac{C+A}{2}\right) \] Using the identities: \[ \cos\left(\frac{B+C}{2}\right) = \cos\left(90^\circ - \frac{A}{2}\right) = \sin\left(\frac{A}{2}\right) \] \[ \cos\left(\frac{C+A}{2}\right) = \cos\left(90^\circ - \frac{B}{2}\right) = \sin\left(\frac{B}{2}\right) \] 7. **Final Expression**: Thus, we have: \[ \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A}{2}\right) \sin\left(\frac{B}{2}\right) \] Using the earlier derived values, we can find: \[ \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{B+C}{2}\right) \cos\left(\frac{C+A}{2}\right) = \frac{1}{8} \] ### Conclusion: The value of \( \cos\left(\frac{A+B}{2}\right) \cos\left(\frac{B+C}{2}\right) \cos\left(\frac{C+A}{2}\right) \) is \( \frac{1}{8} \). ---
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    PUNEET DOGRA|Exercise PREV YEAR QUESTION|30 Videos
  • PROBABILITY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|159 Videos
  • QUADRATIC EQUATIONS

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|103 Videos

Similar Questions

Explore conceptually related problems

Consider a DeltaABC in which CosA+CosB+CosC=sqrt(3)Sin""(pi)/(3) What is the value of Sin((A)/(2))Sin((B)/(2))Sin((C)/(2))

Consider a triangle ABC in which cos A + cos B + cos C = sqrt(3) "sin"(pi)/(3) What is the value of cos((A+B)/(2))cos((B+C)/(2))cos((C+A)/(2)) ?

Consider a triangle ABC in which cos A + cos B + cos C = sqrt(3) "sin"(pi)/(3) What is the value of "sin"(A)/(2)"sin"(B)/(2)"sin"(C)/(2) ?

If A + B =(pi)/(3) and cosA + cosB = 1then the value of cos ((A-B)/2) is_______

If cos A=4/(5), cosB=12/13 and (3pi)/2 < A, B < 2pi then find the value of cos(A+B)

In DeltaABC,(cosA)/(a)+(cosB)/(b)+(cosC)/(c) =

If A+B+C+D = 2pi , prove that : cosA +cosB+cosC+cosD=4 cos( (A+B)/2) cos((B+C)/(2) )cos( (C+A)/2)

If cos(A - B) = (3)/(5) and tanA tanB = 2, then the value of cosA cosB is _____

In a Delta ABC , if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin C= (3+ sqrt3)/(8) , then The value of tan A tan B tanC is

If A+B+C+D=2pi , show that : cosA-cosB+cosC-cosD=4sin( (A+B)/(2)) sin( (A+D)/(2)) cos( (A+C)/(2)) .

PUNEET DOGRA-PROPERTIES OF TRIANGLES -PREV YEAR QUESTION
  1. Consider the following for triangle ABC I. Sin((B+C)/(2))=Cos((A)/(2...

    Text Solution

    |

  2. Consider a DeltaABC in which CosA+CosB+CosC=sqrt(3)Sin""(pi)/(3) Wha...

    Text Solution

    |

  3. Consider a DeltaABC in which CosA+CosB+CosC=sqrt(3)Sin""(pi)/(3) Wha...

    Text Solution

    |

  4. Consider a DeltaABC satisfying 2aSin^(2)((C)/(2))+2cSin^(2)((A)/(2))=2...

    Text Solution

    |

  5. Consider a DeltaABC satisfying 2aSin^(2)((C)/(2))+2cSin^(2)((A)/(2))=2...

    Text Solution

    |

  6. If in a triangle ABC, a=1+sqrt(3)cm,b=2 cm and angleC=60^(@) , then fi...

    Text Solution

    |

  7. In a DeltaABC, if a = 5, B=45^(@) and c=2sqrt(2), then b=

    Text Solution

    |

  8. Consider the following statements: I. There exists no DeltaABC for ...

    Text Solution

    |

  9. If the angles of a triangle are 30^(@) and 45^(@), and the included si...

    Text Solution

    |

  10. In any DeltaABC.a=18,b=24 and c=30, then what is SinC equal?

    Text Solution

    |

  11. The angles of a triangle are in AP and the least angle is 30^(@). What...

    Text Solution

    |

  12. In DeltaABC, if the angles A.B.C are in AP, which one of the following...

    Text Solution

    |

  13. If the sides of a triangle are 6cm, 10cm and 14cm, then what is the la...

    Text Solution

    |

  14. If sides of a triangle are in the ratio 2:sqrt6:1+sqrt3 the what is t...

    Text Solution

    |

  15. In a DeltaABC,a=8,b=10 and c=12. What is angleC equal?

    Text Solution

    |

  16. The sides a, b, c of a DeltaABC are in AP and 'a' is the smallest side...

    Text Solution

    |

  17. In a triangle ABC, if c=2, A=120^(@) and a=c then what is angle C equa...

    Text Solution

    |

  18. ABC is a triangle right angled at B. The hypotenuse (AC) is four times...

    Text Solution

    |

  19. ABC is a triangle right angled at B. The hypotenuse (AC) is four times...

    Text Solution

    |

  20. ABC is a triangle right angled at B. The hypotenuse (AC) is four times...

    Text Solution

    |