Home
Class 14
MATHS
If vec(r )(1)=lamda hat(i) + 2hat(j) + h...

If `vec(r )_(1)=lamda hat(i) + 2hat(j) + hat(k). vec(r )_(2)= hat(i) + (2 - lamda) hat(j) +2hat(k)` are such that `|vec(r )_(1)| gt |vec(r )_(2)|` then `lamda` satisfies which one of the following?

A

`lamda = 0`

B

`lamda =1`

C

`lamda lt 1`

D

`lamda gt 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \( \lambda \) such that the magnitude of vector \( \vec{r}_1 \) is greater than the magnitude of vector \( \vec{r}_2 \). ### Step-by-Step Solution 1. **Define the vectors**: \[ \vec{r}_1 = \lambda \hat{i} + 2 \hat{j} + \hat{k} \] \[ \vec{r}_2 = \hat{i} + (2 - \lambda) \hat{j} + 2 \hat{k} \] 2. **Calculate the magnitudes of the vectors**: The magnitude of \( \vec{r}_1 \) is given by: \[ |\vec{r}_1| = \sqrt{\lambda^2 + 2^2 + 1^2} = \sqrt{\lambda^2 + 4 + 1} = \sqrt{\lambda^2 + 5} \] The magnitude of \( \vec{r}_2 \) is given by: \[ |\vec{r}_2| = \sqrt{1^2 + (2 - \lambda)^2 + 2^2} = \sqrt{1 + (2 - \lambda)^2 + 4} \] Expanding \( (2 - \lambda)^2 \): \[ (2 - \lambda)^2 = 4 - 4\lambda + \lambda^2 \] Therefore, \[ |\vec{r}_2| = \sqrt{1 + 4 - 4\lambda + \lambda^2 + 4} = \sqrt{\lambda^2 - 4\lambda + 9} \] 3. **Set up the inequality**: We need to solve the inequality: \[ |\vec{r}_1| > |\vec{r}_2| \] This translates to: \[ \sqrt{\lambda^2 + 5} > \sqrt{\lambda^2 - 4\lambda + 9} \] 4. **Square both sides** (since both sides are positive): \[ \lambda^2 + 5 > \lambda^2 - 4\lambda + 9 \] 5. **Simplify the inequality**: Subtract \( \lambda^2 \) from both sides: \[ 5 > -4\lambda + 9 \] Rearranging gives: \[ -4\lambda > 5 - 9 \] \[ -4\lambda > -4 \] Dividing both sides by -4 (remember to flip the inequality): \[ \lambda < 1 \] ### Conclusion The value of \( \lambda \) must satisfy: \[ \lambda < 1 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

If vec(r_(1))=lambda vec(i)+2hat(j)+hat(k), vec(r_(2))=hat(i)+(2-lambda)hat(j)+2hat(k) are such that |vec(r_(1))| gt |vec(r_(2))| , then lambda satisfies which one of the following?

If vec(a) = hat(i) - hat(j) + hat(k). vec(b) = 2hat(i) + 3hat(j) + 2hat(k) and vec(c ) = hat(i) + m hat(j) + n hat(k) are three coplanar vectors and |vec(c )| = sqrt6 , then which one of the following is correct?

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

If vec(a)= 2 hat(i) + 3hat(j) + 4hat(k) and vec(b) = 3hat(i) + 2hat(j) - lamda hat(k) are perpendicular, then what is the value of lamda ?

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

If vec(a)=2hat(i)+hat(j)-2hat(k) , then |vec(a)|= ____________.

PUNEET DOGRA-VECTOR-Prev Year Questions
  1. If vec(r )(1)=lamda hat(i) + 2hat(j) + hat(k). vec(r )(2)= hat(i) + (2...

    Text Solution

    |

  2. The projection of the vector vec(A)= hat(i)-2hat(j)+hat(k) on the vect...

    Text Solution

    |

  3. If the magnitude of sum of two vectors is equal to the magnitude of di...

    Text Solution

    |

  4. Simplify:- [(7)^2 + (9)^2]/5 = ?

    Text Solution

    |

  5. Consider the following statements: 1. The magnitude of vec(a) xx vec...

    Text Solution

    |

  6. If vec(a) and vec(b) are unit vectors and theta is the angle between t...

    Text Solution

    |

  7. If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3...

    Text Solution

    |

  8. If position vectors of two points A and B are 3hat(i)- 2hat(j) + hat(k...

    Text Solution

    |

  9. In a right angled triangle hypotenuse AC= p, then vec(AB). vec(AC ) + ...

    Text Solution

    |

  10. Find th esine of angles between vectors vec(a)= 2hat(i) - 6hat(j) - 3h...

    Text Solution

    |

  11. Find the value of lamda for which 3hat(i) + 4hat(j) - hat(k) and -2 ha...

    Text Solution

    |

  12. In a triangle ABC, if taken in order, consider the following statement...

    Text Solution

    |

  13. A spacecraft at hat(i) + 2hat(j) + 3hat(k) is subjected to a force la...

    Text Solution

    |

  14. What is (vec(a)- vec(b)) xx (vec(a) + vec(b)) equal to ?

    Text Solution

    |

  15. Let vec(a).vec(b) and vec(c ) be three mutually perpendicular vectors ...

    Text Solution

    |

  16. If |vec(a) | = 3, |vec(b)|= 4 and |vec(a)- vec(b)|=5, then what si the...

    Text Solution

    |

  17. A unit vector perpendicular to each of the vectors 2hat(i) - hat(j) + ...

    Text Solution

    |

  18. If vec(r )= x hat(i) + y hat(j) + z hat(k), then what is vec(r ). (ha...

    Text Solution

    |

  19. Let |vec(a)| # 0.|vec(b)| ne 0 (vec(a) + vec(b)). (vec(a) + vec(b)) = ...

    Text Solution

    |

  20. If the vectors vec(k) and vec(A) are parallel to each other, then what...

    Text Solution

    |

  21. if vec(a) + 2vec(b) + 3vec(c ) = 0 and vec(a) xx vec(b) + vec(b) xx ve...

    Text Solution

    |