Home
Class 14
MATHS
In a right angled triangle hypotenuse AC...

In a right angled triangle hypotenuse AC= p, then `vec(AB). vec(AC ) + vec(BC) .vec(BA) + vec(CA). vec(CB)` equal to ?

A

`p^(2)`

B

`2p^(2)`

C

`(p^(2))/(2)`

D

p

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \vec{AB} \cdot \vec{AC} + \vec{BC} \cdot \vec{BA} + \vec{CA} \cdot \vec{CB} \] Given that triangle ABC is a right-angled triangle with hypotenuse AC = p, we can follow these steps: ### Step 1: Understand the vectors involved In a right-angled triangle: - \(\vec{AB}\) is one leg, - \(\vec{BC}\) is the other leg, - \(\vec{AC}\) is the hypotenuse. ### Step 2: Analyze the dot products Since \(\vec{AB}\) and \(\vec{BC}\) are perpendicular to each other, we know that: \[ \vec{BC} \cdot \vec{AB} = 0 \] This means that the term \(\vec{BC} \cdot \vec{BA}\) (which is \(-\vec{BC} \cdot \vec{AB}\)) will also equal 0. ### Step 3: Rewrite the expression Now we can simplify the expression: \[ \vec{AB} \cdot \vec{AC} + 0 + \vec{CA} \cdot \vec{CB} \] ### Step 4: Change the direction of vectors Notice that \(\vec{CA} = -\vec{AC}\) and \(\vec{CB} = -\vec{BC}\). Thus, we can rewrite \(\vec{CA} \cdot \vec{CB}\) as: \[ \vec{CA} \cdot \vec{CB} = (-\vec{AC}) \cdot (-\vec{BC}) = \vec{AC} \cdot \vec{BC} \] ### Step 5: Combine the terms Now we can combine the terms: \[ \vec{AB} \cdot \vec{AC} + \vec{AC} \cdot \vec{BC} \] ### Step 6: Factor out \(\vec{AC}\) We can factor out \(\vec{AC}\): \[ \vec{AC} \cdot (\vec{AB} + \vec{BC}) \] ### Step 7: Use the Pythagorean theorem In a right triangle, the sum of the squares of the legs equals the square of the hypotenuse. Therefore, we can express \(\vec{AB} + \vec{BC}\) in terms of \(\vec{AC}\): \[ \vec{AB} + \vec{BC} = \vec{AC} \] Thus, we have: \[ \vec{AC} \cdot \vec{AC} \] ### Step 8: Calculate the final result The dot product \(\vec{AC} \cdot \vec{AC}\) is equal to the magnitude squared of \(\vec{AC}\): \[ \vec{AC} \cdot \vec{AC} = |\vec{AC}|^2 = p^2 \] ### Final Answer So the value of the expression is: \[ p^2 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

If in a right-angled triangle ABC, hypotenuse AC=p, then what is vec(AB).vec(AC)+vec(BC).vec(BA)+vec(CA).vec(CB) equal to ?

In a right angled triangle ABC, the hypotenuse AB =p, then vec(AB).vec(AC) + vec(BC).vec(BA)+vec(CA).vec(CB) is equal to:

If in a right-angled triangle ABC, the hypotenuse AB=p, then vec AB.AC+vec BC*vec BA+vec CA.vec CB is equal to 2p^(2) b.(p^(2))/(2) c.p^(2) d.none of these

In a right angled triangle ABC.the hypotenuse AB=p,then AB.AC+BC.BA+CA.CB

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

In a regular hexagon ABCDEF, prove that vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=3vec(AD)

A parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC) '

ABCD is a parallelogram . If vec(AB)=vec(a), vec(BC)=vec(b) , then what vec(BD) equal to ?

In Fig. ABCDEF is a ragular hexagon. Prove that vec(AB) +vec(AC) +vec(AD) +vec(AE) +vec(AF) = 6 vec(AO) .

PUNEET DOGRA-VECTOR-Prev Year Questions
  1. If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3...

    Text Solution

    |

  2. If position vectors of two points A and B are 3hat(i)- 2hat(j) + hat(k...

    Text Solution

    |

  3. In a right angled triangle hypotenuse AC= p, then vec(AB). vec(AC ) + ...

    Text Solution

    |

  4. Find th esine of angles between vectors vec(a)= 2hat(i) - 6hat(j) - 3h...

    Text Solution

    |

  5. Find the value of lamda for which 3hat(i) + 4hat(j) - hat(k) and -2 ha...

    Text Solution

    |

  6. In a triangle ABC, if taken in order, consider the following statement...

    Text Solution

    |

  7. A spacecraft at hat(i) + 2hat(j) + 3hat(k) is subjected to a force la...

    Text Solution

    |

  8. What is (vec(a)- vec(b)) xx (vec(a) + vec(b)) equal to ?

    Text Solution

    |

  9. Let vec(a).vec(b) and vec(c ) be three mutually perpendicular vectors ...

    Text Solution

    |

  10. If |vec(a) | = 3, |vec(b)|= 4 and |vec(a)- vec(b)|=5, then what si the...

    Text Solution

    |

  11. A unit vector perpendicular to each of the vectors 2hat(i) - hat(j) + ...

    Text Solution

    |

  12. If vec(r )= x hat(i) + y hat(j) + z hat(k), then what is vec(r ). (ha...

    Text Solution

    |

  13. Let |vec(a)| # 0.|vec(b)| ne 0 (vec(a) + vec(b)). (vec(a) + vec(b)) = ...

    Text Solution

    |

  14. If the vectors vec(k) and vec(A) are parallel to each other, then what...

    Text Solution

    |

  15. if vec(a) + 2vec(b) + 3vec(c ) = 0 and vec(a) xx vec(b) + vec(b) xx ve...

    Text Solution

    |

  16. What is the moment about the point hat(i) + 2hat(j) - hat(k) of a forc...

    Text Solution

    |

  17. Let vec(p) and vec(q) be the position vectors of the point P and Q re...

    Text Solution

    |

  18. If vec(a) and vec(b) are vectors such that |vec(a)| = 2, |vec(b)|= 7 a...

    Text Solution

    |

  19. If alpha, beta and gamma are angles which he vector vec(OP) (O being t...

    Text Solution

    |

  20. Simplify:-- 12% of 50% of 8600 = ?

    Text Solution

    |