Home
Class 14
MATHS
Find th esine of angles between vectors ...

Find th esine of angles between vectors `vec(a)= 2hat(i) - 6hat(j) - 3hat(k), and vec(b) = 4hat(i) + 3hat(j)- hat(k)`?

A

`(1)/(sqrt26)`

B

`(5)/(sqrt26)`

C

`(5)/(26)`

D

`(1)/(26)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sine of the angle between the vectors \(\vec{a} = 2\hat{i} - 6\hat{j} - 3\hat{k}\) and \(\vec{b} = 4\hat{i} + 3\hat{j} - \hat{k}\), we can use the formula: \[ \sin \theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}| |\vec{b}|} \] ### Step 1: Calculate the cross product \(\vec{a} \times \vec{b}\) We can set up the determinant to find the cross product: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -6 & -3 \\ 4 & 3 & -1 \end{vmatrix} \] ### Step 2: Expand the determinant Using the determinant formula, we expand it as follows: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} -6 & -3 \\ 3 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -3 \\ 4 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -6 \\ 4 & 3 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \(\hat{i}\): \[ (-6)(-1) - (-3)(3) = 6 + 9 = 15 \] 2. For \(\hat{j}\): \[ (2)(-1) - (-3)(4) = -2 + 12 = 10 \] 3. For \(\hat{k}\): \[ (2)(3) - (-6)(4) = 6 + 24 = 30 \] Thus, we have: \[ \vec{a} \times \vec{b} = 15\hat{i} - 10\hat{j} + 30\hat{k} \] ### Step 3: Calculate the magnitude of \(\vec{a} \times \vec{b}\) The magnitude is given by: \[ |\vec{a} \times \vec{b}| = \sqrt{15^2 + (-10)^2 + 30^2} = \sqrt{225 + 100 + 900} = \sqrt{1225} = 35 \] ### Step 4: Calculate the magnitude of \(\vec{a}\) \[ |\vec{a}| = \sqrt{2^2 + (-6)^2 + (-3)^2} = \sqrt{4 + 36 + 9} = \sqrt{49} = 7 \] ### Step 5: Calculate the magnitude of \(\vec{b}\) \[ |\vec{b}| = \sqrt{4^2 + 3^2 + (-1)^2} = \sqrt{16 + 9 + 1} = \sqrt{26} \] ### Step 6: Substitute into the sine formula Now we can substitute these values into the sine formula: \[ \sin \theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}| |\vec{b}|} = \frac{35}{7 \cdot \sqrt{26}} = \frac{35}{7\sqrt{26}} = \frac{5}{\sqrt{26}} \] ### Final Answer Thus, the sine of the angle between the vectors is: \[ \sin \theta = \frac{5}{\sqrt{26}} \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) and vec(b)=4hat(i)+3hat(j)-hat(k)

Find the sine of the angle between the vectors vec(a) =(2 hat(i) - hat(j) + 3 hat(k)) and vec(b) = (hat(i) + 3 hat(j) + 2 hat(k)).

Find the unit vectors perpendicular to the plane of the vectors vec(a) = 2 hat(i) - 6 hat(j)- 3 hat(k) and vec(b)= 4 hat(i) + 3 hat(j) - hat(k).

Find the angle between the vectors : vec(a)=hat(i)+hat(j)-hat(k) " and " vec(b)=hat(i)-hat(j)+hat(k)

Find the angle between the vectors : vec(a)=2hat(i)-hat(j)+2hat(k) " and " vec(b)=6hat(i)+2hat(j)+3hat(k) .

The angle between two vectors vec(A)= 3hat(i)+4hat(j)+5hat(k) and vec(B)= 3hat(i)+4hat(j)+5hat(k) is

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

The angle between the two Vectors vec(A)= 3hat(i)+4hat(j)+5hat(k) and vec(B)= 3hat(i)+4hat(j)-5hat(k) will be

Find the area of the parallelogram whose adjacent sides are represented by the vectors (i) vec(a)=hat(i) + 2 hat(j)+ 3 hat(k) and vec(b)=-3 hat(i)- 2 hat(j) + hat(k) (ii) vec(a)=(3 hat(i)+hat(j) + 4 hat(k)) and vec(b)= ( hat(i)- hat(j) + hat(k)) (iii) vec(a) = 2 hat(i)+ hat(j) +3 hat(k) and vec(b)= hat(i)-hat(j) (iv) vec(b)= 2 hat(i) and vec(b) = 3 hat(j).

The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3hat(i)-hat(j)+2hat(k) is :

PUNEET DOGRA-VECTOR-Prev Year Questions
  1. If position vectors of two points A and B are 3hat(i)- 2hat(j) + hat(k...

    Text Solution

    |

  2. In a right angled triangle hypotenuse AC= p, then vec(AB). vec(AC ) + ...

    Text Solution

    |

  3. Find th esine of angles between vectors vec(a)= 2hat(i) - 6hat(j) - 3h...

    Text Solution

    |

  4. Find the value of lamda for which 3hat(i) + 4hat(j) - hat(k) and -2 ha...

    Text Solution

    |

  5. In a triangle ABC, if taken in order, consider the following statement...

    Text Solution

    |

  6. A spacecraft at hat(i) + 2hat(j) + 3hat(k) is subjected to a force la...

    Text Solution

    |

  7. What is (vec(a)- vec(b)) xx (vec(a) + vec(b)) equal to ?

    Text Solution

    |

  8. Let vec(a).vec(b) and vec(c ) be three mutually perpendicular vectors ...

    Text Solution

    |

  9. If |vec(a) | = 3, |vec(b)|= 4 and |vec(a)- vec(b)|=5, then what si the...

    Text Solution

    |

  10. A unit vector perpendicular to each of the vectors 2hat(i) - hat(j) + ...

    Text Solution

    |

  11. If vec(r )= x hat(i) + y hat(j) + z hat(k), then what is vec(r ). (ha...

    Text Solution

    |

  12. Let |vec(a)| # 0.|vec(b)| ne 0 (vec(a) + vec(b)). (vec(a) + vec(b)) = ...

    Text Solution

    |

  13. If the vectors vec(k) and vec(A) are parallel to each other, then what...

    Text Solution

    |

  14. if vec(a) + 2vec(b) + 3vec(c ) = 0 and vec(a) xx vec(b) + vec(b) xx ve...

    Text Solution

    |

  15. What is the moment about the point hat(i) + 2hat(j) - hat(k) of a forc...

    Text Solution

    |

  16. Let vec(p) and vec(q) be the position vectors of the point P and Q re...

    Text Solution

    |

  17. If vec(a) and vec(b) are vectors such that |vec(a)| = 2, |vec(b)|= 7 a...

    Text Solution

    |

  18. If alpha, beta and gamma are angles which he vector vec(OP) (O being t...

    Text Solution

    |

  19. Simplify:-- 12% of 50% of 8600 = ?

    Text Solution

    |

  20. If vec(a) and vec(b) are two unit vectors, then the vector (vec(a) + v...

    Text Solution

    |