Home
Class 14
MATHS
In a triangle ABC, if taken in order, co...

In a triangle ABC, if taken in order, consider the following statements
1. `vec(AB) + vec(BC) + vec(CA) = vec(0)`
2 `vec(AB) + vec(BC) - vec(CA) = vec(0)`
3. `vec(AB)- vec(BC) + vec(CA) = vec(0)`
4. `vec(BA)- vec(BC) + vec(CA) = vec(0)`
How many of the above statements are correct?

A

one

B

two

C

Three

D

Four

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze each of the given statements regarding the vectors in triangle ABC. ### Step 1: Understand the Vectors in Triangle ABC In triangle ABC, we can define the vectors as follows: - \(\vec{AB} = \vec{B} - \vec{A}\) - \(\vec{BC} = \vec{C} - \vec{B}\) - \(\vec{CA} = \vec{A} - \vec{C}\) ### Step 2: Analyze Each Statement **Statement 1:** \(\vec{AB} + \vec{BC} + \vec{CA} = \vec{0}\) Substituting the vectors: \[ \vec{AB} + \vec{BC} + \vec{CA} = (\vec{B} - \vec{A}) + (\vec{C} - \vec{B}) + (\vec{A} - \vec{C}) \] Simplifying: \[ = \vec{B} - \vec{A} + \vec{C} - \vec{B} + \vec{A} - \vec{C} = \vec{0} \] **This statement is correct.** **Statement 2:** \(\vec{AB} + \vec{BC} - \vec{CA} = \vec{0}\) Substituting the vectors: \[ \vec{AB} + \vec{BC} - \vec{CA} = (\vec{B} - \vec{A}) + (\vec{C} - \vec{B}) - (\vec{A} - \vec{C}) \] Simplifying: \[ = \vec{B} - \vec{A} + \vec{C} - \vec{B} - \vec{A} + \vec{C} = 2\vec{C} - 2\vec{A} \neq \vec{0} \] **This statement is incorrect.** **Statement 3:** \(\vec{AB} - \vec{BC} + \vec{CA} = \vec{0}\) Substituting the vectors: \[ \vec{AB} - \vec{BC} + \vec{CA} = (\vec{B} - \vec{A}) - (\vec{C} - \vec{B}) + (\vec{A} - \vec{C}) \] Simplifying: \[ = \vec{B} - \vec{A} - \vec{C} + \vec{B} + \vec{A} - \vec{C} = 2\vec{B} - 2\vec{C} \neq \vec{0} \] **This statement is incorrect.** **Statement 4:** \(\vec{BA} - \vec{BC} + \vec{CA} = \vec{0}\) Substituting the vectors: \[ \vec{BA} - \vec{BC} + \vec{CA} = (\vec{A} - \vec{B}) - (\vec{C} - \vec{B}) + (\vec{A} - \vec{C}) \] Simplifying: \[ = \vec{A} - \vec{B} - \vec{C} + \vec{B} + \vec{A} - \vec{C} = 2\vec{A} - 2\vec{C} \neq \vec{0} \] **This statement is incorrect.** ### Conclusion Only Statement 1 is correct. Therefore, the number of correct statements is **1**.
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

If vec( A) + vec(B) =vec( C ) , and | vec(A)| =2 | vec( B) | and vec( B). vec( C ) = 0 , then

In /_\ABC whch of the folloiwng is not true? vec(AB)+vec(BC)+vec(CA)=0 (A) vec(AB)+vec(BC)+vec(CA)=0 (B) vec(AB)+vec(BC)-vec(AC)=0 (C) vec(AB)+vec(BC)-vec(CA)=0 (D) vec(AB)-vec(CB)+vec(CA)=0

Consider the following statements: 1. The magnitude of vec(a) xx vec(b) is same as the area of a triangle with sides vec(a) and vec(b) . 2. If vec(a) xx vec(b)=vec(0) where vec(a) ne 0. vec(b) ne 0 then vec(a) = lamda vec(b) which of the following statements is/are correct?

If vec(a).vec(b)=0 and vec(a) xx vec(b)=0, " prove that " vec(a)= vec(0) or vec(b)=vec(0) .

vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(c)|=7 . What is vec (a). vec(b) + vec(b). vec(c) + vec(c). vec (a) equal to ?

Consider the following inequalities in respect of vector vec(a) and vec(b) 1. |vec(a) + vec(b)| le |vec(a)| + |vec(b)| 2. |vec(a) - vec(b)| ge |vec(a)|- |vec(b)| Which of the above is/are correct?

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

State whether the following relations are true or false (1) vec(AB)=vec(BA) (2) vec(AB)=-vec(BA) (3) |vec(AB)|=|vec(BA)| (4) |vec(AB)|=|-vec(AB)| (5) hatj=hatk (6) |hatj|=|hatk|

ABC is an equilateral triangle. Length of each side is 'a' and centroid is point O.Find (i) vec(AB)+vec(BC)+vec(CA)=? (ii) vec(OA)+vec(OB)+vec(OC)=? (iii) If |vec(AB)+vec(BC)+vec(AC)|= na then n = ? (iv) If vec(AB) +vec(AC) =n vec(AO) then n = ?

Assertion A : If A, B, C, D are four points on a semi-circular arc with centre at 'O' such that |vec(AB)| = |vec(BC)|=|vec(CD)| , then vec(AB) +vec(AC) +vec(AD) =4 vec(AO) +vec(OB) +vec(OC) Reason R : Polygon law of vector addition yields vec(AB) +vec(BC) +vec(CD) +vec(AD)=2vec(AO) In the light of the above statements, choose the most appropriate answer from the options given below :

PUNEET DOGRA-VECTOR-Prev Year Questions
  1. Find th esine of angles between vectors vec(a)= 2hat(i) - 6hat(j) - 3h...

    Text Solution

    |

  2. Find the value of lamda for which 3hat(i) + 4hat(j) - hat(k) and -2 ha...

    Text Solution

    |

  3. In a triangle ABC, if taken in order, consider the following statement...

    Text Solution

    |

  4. A spacecraft at hat(i) + 2hat(j) + 3hat(k) is subjected to a force la...

    Text Solution

    |

  5. What is (vec(a)- vec(b)) xx (vec(a) + vec(b)) equal to ?

    Text Solution

    |

  6. Let vec(a).vec(b) and vec(c ) be three mutually perpendicular vectors ...

    Text Solution

    |

  7. If |vec(a) | = 3, |vec(b)|= 4 and |vec(a)- vec(b)|=5, then what si the...

    Text Solution

    |

  8. A unit vector perpendicular to each of the vectors 2hat(i) - hat(j) + ...

    Text Solution

    |

  9. If vec(r )= x hat(i) + y hat(j) + z hat(k), then what is vec(r ). (ha...

    Text Solution

    |

  10. Let |vec(a)| # 0.|vec(b)| ne 0 (vec(a) + vec(b)). (vec(a) + vec(b)) = ...

    Text Solution

    |

  11. If the vectors vec(k) and vec(A) are parallel to each other, then what...

    Text Solution

    |

  12. if vec(a) + 2vec(b) + 3vec(c ) = 0 and vec(a) xx vec(b) + vec(b) xx ve...

    Text Solution

    |

  13. What is the moment about the point hat(i) + 2hat(j) - hat(k) of a forc...

    Text Solution

    |

  14. Let vec(p) and vec(q) be the position vectors of the point P and Q re...

    Text Solution

    |

  15. If vec(a) and vec(b) are vectors such that |vec(a)| = 2, |vec(b)|= 7 a...

    Text Solution

    |

  16. If alpha, beta and gamma are angles which he vector vec(OP) (O being t...

    Text Solution

    |

  17. Simplify:-- 12% of 50% of 8600 = ?

    Text Solution

    |

  18. If vec(a) and vec(b) are two unit vectors, then the vector (vec(a) + v...

    Text Solution

    |

  19. A force vec(F) = hat(i) + 3hat(j) + 2hat(k) acts on a particle to disp...

    Text Solution

    |

  20. For any vector vec(a), the value of |vec(a) xx hat(i)|^(2) + |vec(a)...

    Text Solution

    |