Home
Class 14
MATHS
A spacecraft at hat(i) + 2hat(j) + 3hat...

A spacecraft at `hat(i) + 2hat(j) + 3hat(k)` is subjected to a force `lamda hat(k)` by firing a rocket. The spacecraft is subjected to a moment of magnitude.

A

`lamda`

B

`sqrt3 lamda`

C

`sqrt5 lamda`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the vector operations involved in calculating the torque (moment) produced by a force acting on a spacecraft. ### Step 1: Identify the position vector and force vector The position vector \( \mathbf{r} \) of the spacecraft is given as: \[ \mathbf{r} = \hat{i} + 2\hat{j} + 3\hat{k} \] The force vector \( \mathbf{F} \) applied by the rocket is given as: \[ \mathbf{F} = \lambda \hat{k} \] ### Step 2: Write the vectors in component form The position vector \( \mathbf{r} \) can be expressed in component form as: \[ \mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \] The force vector \( \mathbf{F} \) can be expressed in component form as: \[ \mathbf{F} = \begin{pmatrix} 0 \\ 0 \\ \lambda \end{pmatrix} \] ### Step 3: Calculate the torque using the cross product The torque \( \mathbf{\tau} \) is calculated using the cross product of the position vector \( \mathbf{r} \) and the force vector \( \mathbf{F} \): \[ \mathbf{\tau} = \mathbf{r} \times \mathbf{F} \] Using the determinant method for the cross product: \[ \mathbf{\tau} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 0 & 0 & \lambda \end{vmatrix} \] ### Step 4: Calculate the determinant Calculating the determinant, we have: \[ \mathbf{\tau} = \hat{i} \begin{vmatrix} 2 & 3 \\ 0 & \lambda \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 3 \\ 0 & \lambda \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ 0 & 0 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} 2 & 3 \\ 0 & \lambda \end{vmatrix} = 2\lambda - 0 = 2\lambda \) 2. \( \begin{vmatrix} 1 & 3 \\ 0 & \lambda \end{vmatrix} = 1\lambda - 0 = \lambda \) 3. \( \begin{vmatrix} 1 & 2 \\ 0 & 0 \end{vmatrix} = 0 \) Thus, substituting back, we get: \[ \mathbf{\tau} = 2\lambda \hat{i} - \lambda \hat{j} + 0 \hat{k} \] So, \[ \mathbf{\tau} = 2\lambda \hat{i} - \lambda \hat{j} \] ### Step 5: Calculate the magnitude of the torque To find the magnitude of the torque \( |\mathbf{\tau}| \): \[ |\mathbf{\tau}| = \sqrt{(2\lambda)^2 + (-\lambda)^2 + 0^2} \] Calculating this gives: \[ |\mathbf{\tau}| = \sqrt{4\lambda^2 + \lambda^2} = \sqrt{5\lambda^2} = \sqrt{5} \cdot |\lambda| \] ### Final Answer Thus, the magnitude of the torque is: \[ |\mathbf{\tau}| = \sqrt{5} \lambda \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

A spacecraft at hat(i)+2hat(j)+3hat(k) is subjected to a force lambda hat(k) by firing a rocket. The spacecraft is subjected to a moment of magnitude

If vec(a)= 2 hat(i) + 3hat(j) + 4hat(k) and vec(b) = 3hat(i) + 2hat(j) - lamda hat(k) are perpendicular, then what is the value of lamda ?

Find the value of lamda for which 3hat(i) + 4hat(j) - hat(k) and -2 hat(i) + lamda hat(j) + 10 hat(k) are perpendicular?

A force F= 3hat(i) + 4hat(j) - 3hat(k) is applied at the point P. whose position vector is r= 2 hat(i) -2hat(j) - 3hat(k) . What is the magnitude of the moment of the force about the origin?

A particle moves from position 3hat(i)+2hat(j)-6hat(k) to 14hat(i)+13hat(j)+9hat(k) due to a uniform force of 4hat(i)+hat(j)+3hat(k)N . If the displacement is in meters, then find the work done by the force.

What is the moment about the point hat(i) + 2hat(j) - hat(k) of a force represented by 3 hat(i) + hat(k) acting through the point 2 hat(i) - hat(j) + 3hat(k) ?

The ratio in which hat(i)+2hat(j)+3hat(k) divides the join of -2hat(i)+ 3hat(j)+5hat(k) and 7hat(i)-hat(k) is

If vector hat(i)+hat(j)+hat(k), hat(i)-hat(j)+hat(k) and 2hat(i)+3hat(j)+lambda hat(k) are coplanar, then lambda is equal to

Prove that point hat i+2hat j-3hat k,2hat i-hat j+hat k and 2hat i+5hat j-hat k from a triangle in space.

PUNEET DOGRA-VECTOR-Prev Year Questions
  1. Find the value of lamda for which 3hat(i) + 4hat(j) - hat(k) and -2 ha...

    Text Solution

    |

  2. In a triangle ABC, if taken in order, consider the following statement...

    Text Solution

    |

  3. A spacecraft at hat(i) + 2hat(j) + 3hat(k) is subjected to a force la...

    Text Solution

    |

  4. What is (vec(a)- vec(b)) xx (vec(a) + vec(b)) equal to ?

    Text Solution

    |

  5. Let vec(a).vec(b) and vec(c ) be three mutually perpendicular vectors ...

    Text Solution

    |

  6. If |vec(a) | = 3, |vec(b)|= 4 and |vec(a)- vec(b)|=5, then what si the...

    Text Solution

    |

  7. A unit vector perpendicular to each of the vectors 2hat(i) - hat(j) + ...

    Text Solution

    |

  8. If vec(r )= x hat(i) + y hat(j) + z hat(k), then what is vec(r ). (ha...

    Text Solution

    |

  9. Let |vec(a)| # 0.|vec(b)| ne 0 (vec(a) + vec(b)). (vec(a) + vec(b)) = ...

    Text Solution

    |

  10. If the vectors vec(k) and vec(A) are parallel to each other, then what...

    Text Solution

    |

  11. if vec(a) + 2vec(b) + 3vec(c ) = 0 and vec(a) xx vec(b) + vec(b) xx ve...

    Text Solution

    |

  12. What is the moment about the point hat(i) + 2hat(j) - hat(k) of a forc...

    Text Solution

    |

  13. Let vec(p) and vec(q) be the position vectors of the point P and Q re...

    Text Solution

    |

  14. If vec(a) and vec(b) are vectors such that |vec(a)| = 2, |vec(b)|= 7 a...

    Text Solution

    |

  15. If alpha, beta and gamma are angles which he vector vec(OP) (O being t...

    Text Solution

    |

  16. Simplify:-- 12% of 50% of 8600 = ?

    Text Solution

    |

  17. If vec(a) and vec(b) are two unit vectors, then the vector (vec(a) + v...

    Text Solution

    |

  18. A force vec(F) = hat(i) + 3hat(j) + 2hat(k) acts on a particle to disp...

    Text Solution

    |

  19. For any vector vec(a), the value of |vec(a) xx hat(i)|^(2) + |vec(a)...

    Text Solution

    |

  20. If the vectors a hat(i) + hat(j) + hat(k), hat(i) + b hat(j) + hat(k) ...

    Text Solution

    |