Home
Class 14
MATHS
A unit vector perpendicular to each of t...

A unit vector perpendicular to each of the vectors `2hat(i) - hat(j) + hat(k ) and 3hat(i) - 4hat(i) - hat(k)` is

A

`(1)/(sqrt3) hat(i) + (1)/(sqrt3) hat(j) - (1)/(sqrt3) hat(k)`

B

`(1)/(sqrt2) hat(i) + (1)/(2) hat(j) + (1)/(2) hat(k)`

C

`(1)/(sqrt3) hat(i) - (1)/(sqrt3) hat(j) -(1)/(sqrt3) hat(k)`

D

`(1)/(sqrt3) hat(i) + (1)/(3) hat(j) + (1)/(sqrt3) hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector that is perpendicular to the given vectors \( \mathbf{a} = 2\hat{i} - \hat{j} + \hat{k} \) and \( \mathbf{b} = 3\hat{i} - 4\hat{j} - \hat{k} \), we can follow these steps: ### Step 1: Define the vectors Let: \[ \mathbf{a} = 2\hat{i} - \hat{j} + \hat{k} \] \[ \mathbf{b} = 3\hat{i} - 4\hat{j} - \hat{k} \] ### Step 2: Calculate the cross product \( \mathbf{a} \times \mathbf{b} \) The cross product of two vectors can be calculated using the determinant of a matrix formed by the unit vectors \( \hat{i}, \hat{j}, \hat{k} \) and the components of the vectors \( \mathbf{a} \) and \( \mathbf{b} \). \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 3 & -4 & -1 \end{vmatrix} \] ### Step 3: Calculate the determinant Expanding the determinant: \[ \mathbf{a} \times \mathbf{b} = \hat{i} \begin{vmatrix} -1 & 1 \\ -4 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 1 \\ 3 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -1 \\ 3 & -4 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} -1 & 1 \\ -4 & -1 \end{vmatrix} = (-1)(-1) - (1)(-4) = 1 + 4 = 5 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 2 & 1 \\ 3 & -1 \end{vmatrix} = (2)(-1) - (1)(3) = -2 - 3 = -5 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 2 & -1 \\ 3 & -4 \end{vmatrix} = (2)(-4) - (-1)(3) = -8 + 3 = -5 \] Putting it all together: \[ \mathbf{a} \times \mathbf{b} = 5\hat{i} + 5\hat{j} - 5\hat{k} \] ### Step 4: Simplify the cross product We can factor out 5: \[ \mathbf{a} \times \mathbf{b} = 5(\hat{i} + \hat{j} - \hat{k}) \] ### Step 5: Calculate the magnitude of the cross product The magnitude of \( \mathbf{a} \times \mathbf{b} \) is: \[ \|\mathbf{a} \times \mathbf{b}\| = \sqrt{(5)^2 + (5)^2 + (-5)^2} = \sqrt{25 + 25 + 25} = \sqrt{75} = 5\sqrt{3} \] ### Step 6: Find the unit vector The unit vector \( \hat{n} \) that is perpendicular to both \( \mathbf{a} \) and \( \mathbf{b} \) is given by: \[ \hat{n} = \frac{\mathbf{a} \times \mathbf{b}}{\|\mathbf{a} \times \mathbf{b}\|} = \frac{5(\hat{i} + \hat{j} - \hat{k})}{5\sqrt{3}} = \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}} \] ### Final Answer: Thus, the required unit vector is: \[ \hat{n} = \frac{1}{\sqrt{3}} \hat{i} + \frac{1}{\sqrt{3}} \hat{j} - \frac{1}{\sqrt{3}} \hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector perpendicular to each of the vectors hat(i)+2hat(j)-3hat(k) and hat(i)-2hat(j)+hat(k) .

Find a unit vector perpendicular to both the vectors (2hat(i)+3hat(j)+hat(k)) and (hat(i)-hat(j)-2hat(k)) .

Find a unit vector perpendicular to the plane of two vectors a=hat(i)-hat(j)+2hat(k) and b=2hat(i)+3hat(j)-hat(k) .

What is the unit vector perpendicular to the following vectors 2 hat(i) + 2 hat(j) - hat(k) and 6 hat(i) - 3 hat(j) + 2 hat(k)

Find a unit vector perpendicular to each one of the vectors vec(a) = 4 hat(i) - hat (j) + 3hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) .

What is the value of b such that the scalar product of the vector hat(i) + hat(j) + hat(k) with the unit vector parallel to the sum of the vectors 2hat(i) + 4hat(j)-5hat(k) and b hat(i) + 2hat(j) + 3hat(k) is unity ?

Dine the unit vector peroendicular to each of the vectors 3 hat i+ hat j 2 hat k and 2 hat i- 2 hat j = 4 hat k .

Find a unit vector perpendicular to each one of the vectors vec(a)= ( 4 hat(i) - hat(j)+ 3 hat(k)) and vec(b)=(2hat(i) + 2 hat(j)- hat(k)).

Find a unit vector perpendicular to the vectors hat(j) + 2 hat(k) & hat(i) + hat(j)

Find the unit vectors perpendicular to the plane of the vectors vec(a) = 2 hat(i) - 6 hat(j)- 3 hat(k) and vec(b)= 4 hat(i) + 3 hat(j) - hat(k).

PUNEET DOGRA-VECTOR-Prev Year Questions
  1. Let vec(a).vec(b) and vec(c ) be three mutually perpendicular vectors ...

    Text Solution

    |

  2. If |vec(a) | = 3, |vec(b)|= 4 and |vec(a)- vec(b)|=5, then what si the...

    Text Solution

    |

  3. A unit vector perpendicular to each of the vectors 2hat(i) - hat(j) + ...

    Text Solution

    |

  4. If vec(r )= x hat(i) + y hat(j) + z hat(k), then what is vec(r ). (ha...

    Text Solution

    |

  5. Let |vec(a)| # 0.|vec(b)| ne 0 (vec(a) + vec(b)). (vec(a) + vec(b)) = ...

    Text Solution

    |

  6. If the vectors vec(k) and vec(A) are parallel to each other, then what...

    Text Solution

    |

  7. if vec(a) + 2vec(b) + 3vec(c ) = 0 and vec(a) xx vec(b) + vec(b) xx ve...

    Text Solution

    |

  8. What is the moment about the point hat(i) + 2hat(j) - hat(k) of a forc...

    Text Solution

    |

  9. Let vec(p) and vec(q) be the position vectors of the point P and Q re...

    Text Solution

    |

  10. If vec(a) and vec(b) are vectors such that |vec(a)| = 2, |vec(b)|= 7 a...

    Text Solution

    |

  11. If alpha, beta and gamma are angles which he vector vec(OP) (O being t...

    Text Solution

    |

  12. Simplify:-- 12% of 50% of 8600 = ?

    Text Solution

    |

  13. If vec(a) and vec(b) are two unit vectors, then the vector (vec(a) + v...

    Text Solution

    |

  14. A force vec(F) = hat(i) + 3hat(j) + 2hat(k) acts on a particle to disp...

    Text Solution

    |

  15. For any vector vec(a), the value of |vec(a) xx hat(i)|^(2) + |vec(a)...

    Text Solution

    |

  16. If the vectors a hat(i) + hat(j) + hat(k), hat(i) + b hat(j) + hat(k) ...

    Text Solution

    |

  17. If vec(a) = hat(i) - hat(j) + hat(k). vec(b) = 2hat(i) + 3hat(j) + 2h...

    Text Solution

    |

  18. If vec(a) xx vec(b) xx vec(c ) and vec(b) xx vec(c ) xx vec(a), then w...

    Text Solution

    |

  19. Let ABCD be a parallelogram whose diagonals intersect at P and let O b...

    Text Solution

    |

  20. ABCD is a quadrilateral whose diagonals are AC and BD. Which one of th...

    Text Solution

    |