Home
Class 14
MATHS
Let |vec(a)| # 0.|vec(b)| ne 0 (vec(a) +...

Let `|vec(a)| # 0.|vec(b)| ne 0 (vec(a) + vec(b)). (vec(a) + vec(b)) = |vec(a)|^(2) + |vec(b)|^(2)` holds if and only if

A

`vec(a) and vec(b)` are perpendicular

B

`vec(a) and vec(b)` are parallel

C

`vec(a) and vec(b)` are inclined at an angle of `45^(@)`

D

`vec(a) and vec(b)` are anti-parallel

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given expression: \[ (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2 \] ### Step 1: Expand the left-hand side Using the distributive property of the dot product, we can expand the left-hand side: \[ (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} \] ### Step 2: Simplify the expression This simplifies to: \[ |\vec{a}|^2 + 2(\vec{a} \cdot \vec{b}) + |\vec{b}|^2 \] ### Step 3: Set the equation Now we set this equal to the right-hand side of the original equation: \[ |\vec{a}|^2 + 2(\vec{a} \cdot \vec{b}) + |\vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 \] ### Step 4: Cancel common terms We can subtract \( |\vec{a}|^2 + |\vec{b}|^2 \) from both sides: \[ 2(\vec{a} \cdot \vec{b}) = 0 \] ### Step 5: Solve for the dot product This implies: \[ \vec{a} \cdot \vec{b} = 0 \] ### Step 6: Interpret the result The dot product of two vectors is zero if and only if the vectors are perpendicular to each other. Therefore, we conclude that: \[ \vec{a} \text{ and } \vec{b} \text{ are perpendicular.} \] ### Final Answer The condition holds if and only if \(\vec{a}\) and \(\vec{b}\) are perpendicular. ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

Let |vec(a)|~=0, |vec(b)|~=0 (vec(a)+vec(b)).(vec(a)+vec(b))=|vec(a)|^(2)+|vec(b)|^(2) holds if and only if

If vec(a).vec(b)=0 and vec(a) xx vec(b)=0, " prove that " vec(a)= vec(0) or vec(b)=vec(0) .

Show that the projection of vec(b) on vec(a) ne vec(0) is : ((vec(a).vec(b))/(|vec(a)|^(2)))vec(a) .

When does |vec(a)+vec(b)|=|vec(a)|+|vec(b)| hold?

Consider the following statements: 1. The magnitude of vec(a) xx vec(b) is same as the area of a triangle with sides vec(a) and vec(b) . 2. If vec(a) xx vec(b)=vec(0) where vec(a) ne 0. vec(b) ne 0 then vec(a) = lamda vec(b) which of the following statements is/are correct?

Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec(a)|=10, |vec(b)|=6 and |vec(c) |=14 . What is the angle between vec(a) and vec(b) ?

Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec(a)|=10, |vec(b)|=6 and |vec(c) |=14 . What is vec(a). vec(b) + vec(b).vec(c)+ vec(c). vec(a) . equal to ?

For non-zero vectors vec a , vec b ,a n d vec c ,|( vec axx vec b)dot vec c|=| vec a|| vec b|| vec c| holds if and only if a. vec a* vec b=0, vec b* vec c=0 b. vec b* vec c=0, vec c* vec a=0 c. vec c* vec a=0, vec a* vec b=0 d. vec a* vec b=0, vec b* vec c=0, vec c* vec a=0

Let vec(a) and vec(b) be two nonzero vector. Prove that vec(a) bot vec(b) hArr |vec(a)+vec(b)|=|vec(a)-vec(b)| .

vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(c)|=7 . What is vec (a). vec(b) + vec(b). vec(c) + vec(c). vec (a) equal to ?

PUNEET DOGRA-VECTOR-Prev Year Questions
  1. A unit vector perpendicular to each of the vectors 2hat(i) - hat(j) + ...

    Text Solution

    |

  2. If vec(r )= x hat(i) + y hat(j) + z hat(k), then what is vec(r ). (ha...

    Text Solution

    |

  3. Let |vec(a)| # 0.|vec(b)| ne 0 (vec(a) + vec(b)). (vec(a) + vec(b)) = ...

    Text Solution

    |

  4. If the vectors vec(k) and vec(A) are parallel to each other, then what...

    Text Solution

    |

  5. if vec(a) + 2vec(b) + 3vec(c ) = 0 and vec(a) xx vec(b) + vec(b) xx ve...

    Text Solution

    |

  6. What is the moment about the point hat(i) + 2hat(j) - hat(k) of a forc...

    Text Solution

    |

  7. Let vec(p) and vec(q) be the position vectors of the point P and Q re...

    Text Solution

    |

  8. If vec(a) and vec(b) are vectors such that |vec(a)| = 2, |vec(b)|= 7 a...

    Text Solution

    |

  9. If alpha, beta and gamma are angles which he vector vec(OP) (O being t...

    Text Solution

    |

  10. Simplify:-- 12% of 50% of 8600 = ?

    Text Solution

    |

  11. If vec(a) and vec(b) are two unit vectors, then the vector (vec(a) + v...

    Text Solution

    |

  12. A force vec(F) = hat(i) + 3hat(j) + 2hat(k) acts on a particle to disp...

    Text Solution

    |

  13. For any vector vec(a), the value of |vec(a) xx hat(i)|^(2) + |vec(a)...

    Text Solution

    |

  14. If the vectors a hat(i) + hat(j) + hat(k), hat(i) + b hat(j) + hat(k) ...

    Text Solution

    |

  15. If vec(a) = hat(i) - hat(j) + hat(k). vec(b) = 2hat(i) + 3hat(j) + 2h...

    Text Solution

    |

  16. If vec(a) xx vec(b) xx vec(c ) and vec(b) xx vec(c ) xx vec(a), then w...

    Text Solution

    |

  17. Let ABCD be a parallelogram whose diagonals intersect at P and let O b...

    Text Solution

    |

  18. ABCD is a quadrilateral whose diagonals are AC and BD. Which one of th...

    Text Solution

    |

  19. If vec(a)= 2 hat(i) + 3hat(j) + 4hat(k) and vec(b) = 3hat(i) + 2hat(j)...

    Text Solution

    |

  20. Consider the following for the next two items that follow Let vec(a)...

    Text Solution

    |