Home
Class 14
MATHS
if vec(a) + 2vec(b) + 3vec(c ) = 0 and v...

if `vec(a) + 2vec(b) + 3vec(c ) = 0 and vec(a) xx vec(b) + vec(b) xx vec(c ) + vec(c ) xx vec(a) = lamda (vec(b) xx vec(c ))` then what is the value of `lamda`?

A

A. 2

B

B. 3

C

C. 4

D

D. 6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow the steps outlined in the video transcript and derive the value of λ step by step. ### Step 1: Write the given equations The problem states: 1. \(\vec{a} + 2\vec{b} + 3\vec{c} = 0\) 2. \(\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \lambda (\vec{b} \times \vec{c})\) ### Step 2: Express \(\vec{a}\) in terms of \(\vec{b}\) and \(\vec{c}\) From the first equation, we can isolate \(\vec{a}\): \[ \vec{a} = -2\vec{b} - 3\vec{c} \] ### Step 3: Substitute \(\vec{a}\) into the second equation We substitute \(\vec{a}\) into the second equation: \[ (-2\vec{b} - 3\vec{c}) \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times (-2\vec{b} - 3\vec{c}) = \lambda (\vec{b} \times \vec{c}) \] ### Step 4: Calculate each cross product 1. \((-2\vec{b}) \times \vec{b} = 0\) (since the cross product of any vector with itself is zero) 2. \((-3\vec{c}) \times \vec{b} = -3(\vec{c} \times \vec{b})\) 3. \(\vec{b} \times \vec{c}\) remains as is. 4. \(\vec{c} \times (-2\vec{b}) = -2(\vec{c} \times \vec{b})\) 5. \(\vec{c} \times (-3\vec{c}) = 0\) (again, the cross product of any vector with itself is zero) Putting these together: \[ 0 - 3(\vec{c} \times \vec{b}) + \vec{b} \times \vec{c} - 2(\vec{c} \times \vec{b}) + 0 = \lambda (\vec{b} \times \vec{c}) \] ### Step 5: Combine like terms Now we can combine the terms: \[ (-3 - 2)(\vec{c} \times \vec{b}) + \vec{b} \times \vec{c} = \lambda (\vec{b} \times \vec{c}) \] This simplifies to: \[ -5(\vec{c} \times \vec{b}) + \vec{b} \times \vec{c} = \lambda (\vec{b} \times \vec{c}) \] ### Step 6: Change the order of cross products Using the property of cross products, we can rewrite \(\vec{c} \times \vec{b}\) as \(-(\vec{b} \times \vec{c})\): \[ -5(-\vec{b} \times \vec{c}) + \vec{b} \times \vec{c} = \lambda (\vec{b} \times \vec{c}) \] This simplifies to: \[ 5(\vec{b} \times \vec{c}) + \vec{b} \times \vec{c} = \lambda (\vec{b} \times \vec{c}) \] ### Step 7: Factor out \(\vec{b} \times \vec{c}\) Combining the terms gives: \[ (5 + 1)(\vec{b} \times \vec{c}) = \lambda (\vec{b} \times \vec{c}) \] Thus, we have: \[ 6(\vec{b} \times \vec{c}) = \lambda (\vec{b} \times \vec{c}) \] ### Step 8: Solve for \(\lambda\) Assuming \(\vec{b} \times \vec{c} \neq 0\), we can divide both sides by \(\vec{b} \times \vec{c}\): \[ \lambda = 6 \] ### Final Answer The value of \(\lambda\) is: \[ \lambda = 6 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

If vec a + vec b + vec c = 0, prove that (vec a xx vec b) = (vec b xx vec c) = (vec c xx vec a)

If [vec(a) vec(b) vec(c)]=4 then [vec(a)times vec(b) vec(b)times vec(c)vec(c) times vec(a)] =

If [veca xx vecb vecb xx vec c vec c xx vec a] = lamda [veca vecb vec c ]^2 then lamda is equal to

[(vec(a) xx vec(b)) xx (vec(b) xx vec(c)), (vec(b) xx vec(c)) xx (vec(c) xx vec(a)),(vec(c) xx vec(a)) xx (vec(a) xx vec(b))] is equal to

The vectors vec(a), vec(b), vec(c ) and vec(d) are such that vec(a) xx vec(b) = vec(c ) xx vec(d) and vec(a) xx vec(c )= vec(b) xx vec(d) . Which of the following is/are correct? 1. (vec(a)- vec(d)) xx (vec(b) - vec(c ))= vec(0) 2. (vec(a) xx vec(b))xx (vec(c ) xx vec(d))= vec(0) Select the correct answer using the codes given below

If vec(A)+vec(B)+vec(C )=0 then vec(A)xx vec(B) is

Let vec(a), vec(b), vec(c) be three vectors mutually perpendicular to each other and have same magnitude. If a vector vec(r) satisfies vec(a) xx {(vec(r) - vec(b)) xx vec(a)} + vec(b) xx {(vec(r) - vec(c)) xx vec(b)} + vec(c) xx {(vec(r) - vec(a)) xx vec(c)} = vec(0) , then vec(r) is equal to :

Let three vectors vec(a), vec(b) and vec(c ) be such that vec(a) xx vec(b) = vec(c), vec(b) xx vec(c) = vec(a) and |vec(a)| = 2 . Then which one of the following is not true ?

The vectors vec(a), vec(b), vec(c) and vec(d) are such that vec(a)xx vec(b) = vec(c) xx d and vec(a) xx vec(c)= vec(b) xx vec(d) . Which of the following is/are correct? 1. (vec(a)-vec(d))xx (vec(b)-vec(c))=vec(0) 2. (vec(a)xx vec(b))xx (vec(c)xx vec(d))=vec(0) Select the correct answer using the code given below :

If vec(a) xx vec(b)= vec(c) xx vec(d) and vec(a) xx vec(c) =vec(b) xx vec(d)," show that " (vec(a)- vec(d)) " is parallel to " (vec(b)-vec(c)) , it being given that a !=d and b != c.

PUNEET DOGRA-VECTOR-Prev Year Questions
  1. Let |vec(a)| # 0.|vec(b)| ne 0 (vec(a) + vec(b)). (vec(a) + vec(b)) = ...

    Text Solution

    |

  2. If the vectors vec(k) and vec(A) are parallel to each other, then what...

    Text Solution

    |

  3. if vec(a) + 2vec(b) + 3vec(c ) = 0 and vec(a) xx vec(b) + vec(b) xx ve...

    Text Solution

    |

  4. What is the moment about the point hat(i) + 2hat(j) - hat(k) of a forc...

    Text Solution

    |

  5. Let vec(p) and vec(q) be the position vectors of the point P and Q re...

    Text Solution

    |

  6. If vec(a) and vec(b) are vectors such that |vec(a)| = 2, |vec(b)|= 7 a...

    Text Solution

    |

  7. If alpha, beta and gamma are angles which he vector vec(OP) (O being t...

    Text Solution

    |

  8. Simplify:-- 12% of 50% of 8600 = ?

    Text Solution

    |

  9. If vec(a) and vec(b) are two unit vectors, then the vector (vec(a) + v...

    Text Solution

    |

  10. A force vec(F) = hat(i) + 3hat(j) + 2hat(k) acts on a particle to disp...

    Text Solution

    |

  11. For any vector vec(a), the value of |vec(a) xx hat(i)|^(2) + |vec(a)...

    Text Solution

    |

  12. If the vectors a hat(i) + hat(j) + hat(k), hat(i) + b hat(j) + hat(k) ...

    Text Solution

    |

  13. If vec(a) = hat(i) - hat(j) + hat(k). vec(b) = 2hat(i) + 3hat(j) + 2h...

    Text Solution

    |

  14. If vec(a) xx vec(b) xx vec(c ) and vec(b) xx vec(c ) xx vec(a), then w...

    Text Solution

    |

  15. Let ABCD be a parallelogram whose diagonals intersect at P and let O b...

    Text Solution

    |

  16. ABCD is a quadrilateral whose diagonals are AC and BD. Which one of th...

    Text Solution

    |

  17. If vec(a)= 2 hat(i) + 3hat(j) + 4hat(k) and vec(b) = 3hat(i) + 2hat(j)...

    Text Solution

    |

  18. Consider the following for the next two items that follow Let vec(a)...

    Text Solution

    |

  19. Consider the following for the next two items that follow Let vec(a)...

    Text Solution

    |

  20. In a right angled triangle hypotenuse AC= p, then vec(AB). vec(AC ) + ...

    Text Solution

    |