Home
Class 14
MATHS
What is the moment about the point hat(i...

What is the moment about the point `hat(i) + 2hat(j) - hat(k)` of a force represented by `3 hat(i) + hat(k)` acting through the point `2 hat(i) - hat(j) + 3hat(k)`?

A

`-3hat(i) + 11hat(j) + 9 hat(k)`

B

`3hat(i)+ 2hat(j) +9hat(k)`

C

`3hat(i) + 4hat(j) + 9hat(k)`

D

`hat(i) + hat(j) + hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the moment (or torque) about the point \( \hat{i} + 2\hat{j} - \hat{k} \) of a force represented by \( 3\hat{i} + \hat{k} \) acting through the point \( 2\hat{i} - \hat{j} + 3\hat{k} \), we can follow these steps: ### Step 1: Define the vectors Let: - Point A (where the moment is calculated) be \( \mathbf{A} = \hat{i} + 2\hat{j} - \hat{k} \) - Point B (where the force is applied) be \( \mathbf{B} = 2\hat{i} - \hat{j} + 3\hat{k} \) - Force vector \( \mathbf{F} = 3\hat{i} + \hat{k} \) ### Step 2: Calculate the position vector \( \mathbf{r} \) The position vector \( \mathbf{r} \) from point A to point B is given by: \[ \mathbf{r} = \mathbf{B} - \mathbf{A} \] Calculating this: \[ \mathbf{r} = (2\hat{i} - \hat{j} + 3\hat{k}) - (\hat{i} + 2\hat{j} - \hat{k}) \] \[ = (2 - 1)\hat{i} + (-1 - 2)\hat{j} + (3 + 1)\hat{k} \] \[ = \hat{i} - 3\hat{j} + 4\hat{k} \] ### Step 3: Calculate the moment (torque) \( \mathbf{M} \) The moment (or torque) \( \mathbf{M} \) is given by the cross product: \[ \mathbf{M} = \mathbf{r} \times \mathbf{F} \] Substituting \( \mathbf{r} \) and \( \mathbf{F} \): \[ \mathbf{M} = (\hat{i} - 3\hat{j} + 4\hat{k}) \times (3\hat{i} + \hat{k}) \] ### Step 4: Set up the determinant for the cross product Using the determinant method for the cross product: \[ \mathbf{M} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 4 \\ 3 & 0 & 1 \end{vmatrix} \] ### Step 5: Calculate the determinant Calculating the determinant: \[ \mathbf{M} = \hat{i} \begin{vmatrix} -3 & 4 \\ 0 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 4 \\ 3 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -3 \\ 3 & 0 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} -3 & 4 \\ 0 & 1 \end{vmatrix} = (-3)(1) - (0)(4) = -3 \) 2. \( \begin{vmatrix} 1 & 4 \\ 3 & 1 \end{vmatrix} = (1)(1) - (3)(4) = 1 - 12 = -11 \) 3. \( \begin{vmatrix} 1 & -3 \\ 3 & 0 \end{vmatrix} = (1)(0) - (3)(-3) = 0 + 9 = 9 \) Putting it all together: \[ \mathbf{M} = -3\hat{i} + 11\hat{j} + 9\hat{k} \] ### Final Answer The moment about the point \( \hat{i} + 2\hat{j} - \hat{k} \) is: \[ \mathbf{M} = -3\hat{i} + 11\hat{j} + 9\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

What is the moment about the point hat(i) +2hat(j)-hat(k) of a force represented by 3 hat(i) + hat(k) acting through the point 2hat(i) - hat(j)+3hat(k) ?

Find the moment about the point hat(i)+2hat(j)-hat(k) of a force represented by hat(i)+2hat(j)+hat(k) acting through the point 2hat(i)+3hat(j)+hat(k) .

Find the moment (torque) about the point hat(i)+2hat(j)+3hat(k) of a force represented by hat(i)+hat(j)+hat(k) acting through the point -2hat(i)+3hat(j)+hat(k) .

Find the moment about the point hat i+2hat j+3hat k of a force represented by hat i+hat j+hat k acting through the point 2hat i+3hat j+hat k

The moment of a force represented by F=hat(i)+2hat(j)+3hat(k) about the point 2hat(i)-hat(j)+hat(k) is equal to

What is the magnitude of the moment of the couple consisting of the force vec(F)=3 hat(i)+2hat(j)-hat(k) acting through the point hat(i)-hat(j)+hat(k) and -vec(F) acting through the point 2hat(i)-3hat(j)-hat(k) ?

A force vec(F) = hat(i) + 3hat(j) + 2hat(k) acts on a particle to displace it from the point A (hat(i) + 2hat(j) - 3hat(k)) to the point B (3hat(i) - hat(j) + 5hat(k)) . The work done by the force will be

Find the torque of a force F=-3hat(i)+2hat(j)+hat(k) acting at the point r=8hat(i)+2hat(j)+3hat(k),(iftau=rxxF)

Find the vector equation of a line passing through the point with position vector 2hat(i) + hat(j) - hat(k) and parallel to the line joining the points - hat(i) + hat(j) + 4 hat(k) and hat(i) + 2 hat(j) + 2 hat(k) .

A force vec(F) = hat(i) + 3 hat(j) + 2 hat(k) acts on a particle to displace it from the point A (hat(i) + 2hat(j) - 3 hat(k)) to the point B(3hat(i) - hat(j)+5hat(k)) . The work done by the force will be

PUNEET DOGRA-VECTOR-Prev Year Questions
  1. If the vectors vec(k) and vec(A) are parallel to each other, then what...

    Text Solution

    |

  2. if vec(a) + 2vec(b) + 3vec(c ) = 0 and vec(a) xx vec(b) + vec(b) xx ve...

    Text Solution

    |

  3. What is the moment about the point hat(i) + 2hat(j) - hat(k) of a forc...

    Text Solution

    |

  4. Let vec(p) and vec(q) be the position vectors of the point P and Q re...

    Text Solution

    |

  5. If vec(a) and vec(b) are vectors such that |vec(a)| = 2, |vec(b)|= 7 a...

    Text Solution

    |

  6. If alpha, beta and gamma are angles which he vector vec(OP) (O being t...

    Text Solution

    |

  7. Simplify:-- 12% of 50% of 8600 = ?

    Text Solution

    |

  8. If vec(a) and vec(b) are two unit vectors, then the vector (vec(a) + v...

    Text Solution

    |

  9. A force vec(F) = hat(i) + 3hat(j) + 2hat(k) acts on a particle to disp...

    Text Solution

    |

  10. For any vector vec(a), the value of |vec(a) xx hat(i)|^(2) + |vec(a)...

    Text Solution

    |

  11. If the vectors a hat(i) + hat(j) + hat(k), hat(i) + b hat(j) + hat(k) ...

    Text Solution

    |

  12. If vec(a) = hat(i) - hat(j) + hat(k). vec(b) = 2hat(i) + 3hat(j) + 2h...

    Text Solution

    |

  13. If vec(a) xx vec(b) xx vec(c ) and vec(b) xx vec(c ) xx vec(a), then w...

    Text Solution

    |

  14. Let ABCD be a parallelogram whose diagonals intersect at P and let O b...

    Text Solution

    |

  15. ABCD is a quadrilateral whose diagonals are AC and BD. Which one of th...

    Text Solution

    |

  16. If vec(a)= 2 hat(i) + 3hat(j) + 4hat(k) and vec(b) = 3hat(i) + 2hat(j)...

    Text Solution

    |

  17. Consider the following for the next two items that follow Let vec(a)...

    Text Solution

    |

  18. Consider the following for the next two items that follow Let vec(a)...

    Text Solution

    |

  19. In a right angled triangle hypotenuse AC= p, then vec(AB). vec(AC ) + ...

    Text Solution

    |

  20. A force vec(F) = 3 hat(i) + 2hat(j) - 4hat(k) is applied at the point ...

    Text Solution

    |