Home
Class 14
MATHS
If alpha, beta and gamma are angles whic...

If `alpha, beta and gamma` are angles which he vector `vec(OP)` (O being the origin) makes with positive direction of the coordinte axes, then which of the following are correct?
1. `cos^(2) alpha + cos^(2) beta = sin^(2) gamma`
2. `sin^(2) alpha + cos^(2)beta= cos^(2)gamma`
3. `sin^(2) alpha + sin^(2) beta + sin^(2) gamma =2`
Select the correct answer the using the codes given below:

A

1 and 2

B

2 and 3

C

1 and 3

D

1, 2 and 3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the three statements given about the angles \( \alpha, \beta, \) and \( \gamma \) that the vector \( \vec{OP} \) makes with the positive direction of the coordinate axes. We will use the properties of direction cosines. ### Step 1: Understand the properties of direction cosines The direction cosines of a vector are defined as: - \( \cos \alpha \) = cosine of the angle with the x-axis - \( \cos \beta \) = cosine of the angle with the y-axis - \( \cos \gamma \) = cosine of the angle with the z-axis The fundamental property of direction cosines is: \[ \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \] ### Step 2: Analyze the first statement The first statement is: \[ \cos^2 \alpha + \cos^2 \beta = \sin^2 \gamma \] Using the identity \( \sin^2 \gamma = 1 - \cos^2 \gamma \), we can rewrite the fundamental property: \[ \cos^2 \alpha + \cos^2 \beta = 1 - \cos^2 \gamma \] Rearranging gives: \[ \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \] This implies: \[ \cos^2 \alpha + \cos^2 \beta = 1 - \cos^2 \gamma \] Thus, we can conclude: \[ \cos^2 \alpha + \cos^2 \beta = \sin^2 \gamma \] So, the first statement is **correct**. ### Step 3: Analyze the second statement The second statement is: \[ \sin^2 \alpha + \cos^2 \beta = \cos^2 \gamma \] Using the identity \( \sin^2 \alpha = 1 - \cos^2 \alpha \), we can rewrite this statement: \[ 1 - \cos^2 \alpha + \cos^2 \beta = \cos^2 \gamma \] Rearranging gives: \[ 1 + \cos^2 \beta - \cos^2 \gamma = \cos^2 \alpha \] This does not hold true based on the properties of direction cosines. Therefore, the second statement is **incorrect**. ### Step 4: Analyze the third statement The third statement is: \[ \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2 \] Using the identity \( \sin^2 \theta = 1 - \cos^2 \theta \), we can express this as: \[ (1 - \cos^2 \alpha) + (1 - \cos^2 \beta) + (1 - \cos^2 \gamma) = 2 \] This simplifies to: \[ 3 - (\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma) = 2 \] Since we know \( \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \), substituting gives: \[ 3 - 1 = 2 \] Thus, the third statement is **correct**. ### Conclusion The correct statements are: 1. \( \cos^2 \alpha + \cos^2 \beta = \sin^2 \gamma \) (Correct) 2. \( \sin^2 \alpha + \cos^2 \beta = \cos^2 \gamma \) (Incorrect) 3. \( \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2 \) (Correct) Thus, the correct answer is **Option C: 1 and 3**.
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta and lambda are the angles which the vector vec(OP) (O being the origin ) makes with positive direction of the coordinate axes, then which of the following are correct? 1. cos^(2) alpha + cos^(2) beta = sin^(2) lambda 2. sin^(2) alpha + sin^(2) beta=cos^(2)lambda 3. sin^(2) alpha + sin^(2)beta + sin^(2)lambda=2 Select the correct answer using the code given below.

If cos alpha + cos beta + cos gamma = 3 then sin alpha + sin beta + sin gamma =

If alpha , beta , gamma are the angles which a directed line makes with the positive directions of the co-ordinates axes,then sin^(2)alpha+sin^(2)beta+sin^(2)gamma is equal to

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then cos ^ (2) alpha + cos ^ (2) beta + cos ^ (2) gamma is

If alpha+beta-gamma=pi , then sin^(2)alpha=sin^(2)beta-sin^(2)gamma is equal to

If alpha + beta + gamma=pi, then the value of sin ^(2) alpha + sin ^(2) beta - sin^(2) gamma is equal to

If cos alpha + cos beta+ cos gamma = 0 = sin alpha + sin beta+sin gamma show that sin^(2)alpha + sin^(2) beta + sin^(2) gamma =cos^(2)alpha +cos^(2) beta + cos^(2) gamma =3/2

If alpha + beta- gamma= pi , prove that sin^(2)alpha + sin^(2)beta - sin^(2)gamma = 2sin alpha sin beta cos gamma .

Given alpha+beta-gamma=pi, prove that sin^(2)alpha+sin^(2)beta-sin^(2)gamma=2sin alpha sin beta cos gamma

PUNEET DOGRA-VECTOR-Prev Year Questions
  1. Let vec(p) and vec(q) be the position vectors of the point P and Q re...

    Text Solution

    |

  2. If vec(a) and vec(b) are vectors such that |vec(a)| = 2, |vec(b)|= 7 a...

    Text Solution

    |

  3. If alpha, beta and gamma are angles which he vector vec(OP) (O being t...

    Text Solution

    |

  4. Simplify:-- 12% of 50% of 8600 = ?

    Text Solution

    |

  5. If vec(a) and vec(b) are two unit vectors, then the vector (vec(a) + v...

    Text Solution

    |

  6. A force vec(F) = hat(i) + 3hat(j) + 2hat(k) acts on a particle to disp...

    Text Solution

    |

  7. For any vector vec(a), the value of |vec(a) xx hat(i)|^(2) + |vec(a)...

    Text Solution

    |

  8. If the vectors a hat(i) + hat(j) + hat(k), hat(i) + b hat(j) + hat(k) ...

    Text Solution

    |

  9. If vec(a) = hat(i) - hat(j) + hat(k). vec(b) = 2hat(i) + 3hat(j) + 2h...

    Text Solution

    |

  10. If vec(a) xx vec(b) xx vec(c ) and vec(b) xx vec(c ) xx vec(a), then w...

    Text Solution

    |

  11. Let ABCD be a parallelogram whose diagonals intersect at P and let O b...

    Text Solution

    |

  12. ABCD is a quadrilateral whose diagonals are AC and BD. Which one of th...

    Text Solution

    |

  13. If vec(a)= 2 hat(i) + 3hat(j) + 4hat(k) and vec(b) = 3hat(i) + 2hat(j)...

    Text Solution

    |

  14. Consider the following for the next two items that follow Let vec(a)...

    Text Solution

    |

  15. Consider the following for the next two items that follow Let vec(a)...

    Text Solution

    |

  16. In a right angled triangle hypotenuse AC= p, then vec(AB). vec(AC ) + ...

    Text Solution

    |

  17. A force vec(F) = 3 hat(i) + 2hat(j) - 4hat(k) is applied at the point ...

    Text Solution

    |

  18. Consider the following for the next two items that follows Let vec(a...

    Text Solution

    |

  19. Simplify:- 4^3 + 5 * 8 + ? = 285

    Text Solution

    |

  20. What is vector of unit length orthogonal to both the vectors hat(i) + ...

    Text Solution

    |