Home
Class 14
MATHS
For any vector vec(a), the value of |v...

For any vector `vec(a)`, the value of ` |vec(a) xx hat(i)|^(2) + |vec(a) xx hat(j)|^(2) + |vec(a) xx hat(k)|^(2)` is equal to

A

`|vec(a)|^(2)`

B

`2|vec(a)|^(2)`

C

`3|vec(a)|^(2)`

D

`4|vec(a)|^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 \] Let's denote the vector \(\vec{a}\) as: \[ \vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \] ### Step 1: Calculate \(\vec{a} \times \hat{i}\) Using the properties of the cross product, we can calculate: \[ \vec{a} \times \hat{i} = (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) \times \hat{i} \] Using the right-hand rule and the properties of the cross product: - \(\hat{i} \times \hat{i} = \vec{0}\) - \(\hat{j} \times \hat{i} = -\hat{k}\) - \(\hat{k} \times \hat{i} = \hat{j}\) Thus, we have: \[ \vec{a} \times \hat{i} = a_2 \hat{j} \times \hat{i} + a_3 \hat{k} \times \hat{i} = -a_2 \hat{k} + a_3 \hat{j} \] So: \[ \vec{a} \times \hat{i} = -a_2 \hat{k} + a_3 \hat{j} \] ### Step 2: Calculate \(|\vec{a} \times \hat{i}|^2\) Now, we find the magnitude squared: \[ |\vec{a} \times \hat{i}|^2 = |-a_2 \hat{k} + a_3 \hat{j}|^2 = a_2^2 + a_3^2 \] ### Step 3: Calculate \(\vec{a} \times \hat{j}\) Next, we compute: \[ \vec{a} \times \hat{j} = (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) \times \hat{j} \] Using the properties of the cross product: \[ \vec{a} \times \hat{j} = a_1 \hat{i} \times \hat{j} + a_3 \hat{k} \times \hat{j} = a_1 \hat{k} - a_3 \hat{i} \] ### Step 4: Calculate \(|\vec{a} \times \hat{j}|^2\) Now we find the magnitude squared: \[ |\vec{a} \times \hat{j}|^2 = |a_1 \hat{k} - a_3 \hat{i}|^2 = a_1^2 + a_3^2 \] ### Step 5: Calculate \(\vec{a} \times \hat{k}\) Now we compute: \[ \vec{a} \times \hat{k} = (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) \times \hat{k} \] Using the properties of the cross product: \[ \vec{a} \times \hat{k} = a_1 \hat{i} \times \hat{k} + a_2 \hat{j} \times \hat{k} = -a_1 \hat{j} + a_2 \hat{i} \] ### Step 6: Calculate \(|\vec{a} \times \hat{k}|^2\) Now we find the magnitude squared: \[ |\vec{a} \times \hat{k}|^2 = |-a_1 \hat{j} + a_2 \hat{i}|^2 = a_1^2 + a_2^2 \] ### Step 7: Combine the results Now we can combine all the results: \[ |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 = (a_2^2 + a_3^2) + (a_1^2 + a_3^2) + (a_1^2 + a_2^2) \] This simplifies to: \[ = 2(a_1^2 + a_2^2 + a_3^2) \] ### Step 8: Relate to \(|\vec{a}|^2\) Since \(|\vec{a}|^2 = a_1^2 + a_2^2 + a_3^2\), we can express the result as: \[ |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 = 2|\vec{a}|^2 \] ### Final Result Thus, the final answer is: \[ |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 = 2|\vec{a}|^2 \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

For any vector vec(a), |vec(a)xx hat(i)|^(2)+ |vec(a)xx hat(j)|^(2)+ |vec(a) xx hat(k)|^(2) is equal to

If vec a =2 hat i + hat j + 2 hat k , then the value of | hat i xx (vac a xx hat i)|^(2) + | hat i xx (vec a xx hat j)|^(2) + |hatk xx (vec a xx hat k)|^(2) equal to _______

For any vector vec(alpha) , what is (vec(alpha). hat( i)) hat(i)+(vec(alpha). hat(j)) hat(j)+(vec(alpha). hat(k)) hat(k) equal to ?

hat i xx(vec a xxhat i)+hat j xx(vec a xxhat j)+hat k xx(vec a xxhat k) is equal to

Let vec(a)= hat(i) +hat(j)+2hat(k) and vec(b)= -hat(i) +2hat(j) +3hat(k) . Then the vector product (vec(a) +vec(b)) xx ((vec(a) xx ((vec(a)-vec(b)) xx vec(b))) xx vec(b)) is equal to

If vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + hat(k) and vec(c )= hat(i) + hat(j) - hat(k) , then what is vec(a) xx (vec(b)+ vec(c )) + vec(b) xx (vec(c ) + vec(a)) + vec(c ) xx (vec(a) + vec(b)) is equal to ?

Let vec( a) = 2 hat(i) - 3 hat(j) + 4 hat(k) and vec( b) = 7 hat(i) + hat(j) - 6 hat(k) . If vec( r ) xx vec( a) = vec( r ) xx vec( b) , vec( r ) . ( hat(i) +2 hat(j) + hat(k)) = -3 , then vec ( r ). ( 2 hat(i)- 3hat(j) + hat(k)) is equal to :

Let vec(A)=2hat(i)-3hat(j)+4hat(k) and vec(B)=4hat(i)+hat(j)+2hat(k) then |vec(A)xx vec(B)| is equal to

Prove that hat i xx(vec a xxhat i)hat j xx(vec a xxhat j)+hat k xx(vec a xxhat k)=2vec a

If vec(r )=x hat(i)+y hat(j)+x hat(k) , find : (vec(r )xx hat(i)).(vec(r )xx hat(j))+xy .

PUNEET DOGRA-VECTOR-Prev Year Questions
  1. If vec(a) and vec(b) are two unit vectors, then the vector (vec(a) + v...

    Text Solution

    |

  2. A force vec(F) = hat(i) + 3hat(j) + 2hat(k) acts on a particle to disp...

    Text Solution

    |

  3. For any vector vec(a), the value of |vec(a) xx hat(i)|^(2) + |vec(a)...

    Text Solution

    |

  4. If the vectors a hat(i) + hat(j) + hat(k), hat(i) + b hat(j) + hat(k) ...

    Text Solution

    |

  5. If vec(a) = hat(i) - hat(j) + hat(k). vec(b) = 2hat(i) + 3hat(j) + 2h...

    Text Solution

    |

  6. If vec(a) xx vec(b) xx vec(c ) and vec(b) xx vec(c ) xx vec(a), then w...

    Text Solution

    |

  7. Let ABCD be a parallelogram whose diagonals intersect at P and let O b...

    Text Solution

    |

  8. ABCD is a quadrilateral whose diagonals are AC and BD. Which one of th...

    Text Solution

    |

  9. If vec(a)= 2 hat(i) + 3hat(j) + 4hat(k) and vec(b) = 3hat(i) + 2hat(j)...

    Text Solution

    |

  10. Consider the following for the next two items that follow Let vec(a)...

    Text Solution

    |

  11. Consider the following for the next two items that follow Let vec(a)...

    Text Solution

    |

  12. In a right angled triangle hypotenuse AC= p, then vec(AB). vec(AC ) + ...

    Text Solution

    |

  13. A force vec(F) = 3 hat(i) + 2hat(j) - 4hat(k) is applied at the point ...

    Text Solution

    |

  14. Consider the following for the next two items that follows Let vec(a...

    Text Solution

    |

  15. Simplify:- 4^3 + 5 * 8 + ? = 285

    Text Solution

    |

  16. What is vector of unit length orthogonal to both the vectors hat(i) + ...

    Text Solution

    |

  17. If vec(a), vec(b) and vec(c ) are the position vectors of the vertices...

    Text Solution

    |

  18. What is the area of the parallelogram having diagonals 3hat(i) + hat(j...

    Text Solution

    |

  19. Let hat(a), hat(b) be two unit vectors and 0 be the angle between them...

    Text Solution

    |

  20. Let hat(a), hat(b) be two unit vectors and 0 be the angle between them...

    Text Solution

    |