Home
Class 14
MATHS
If the vectors a hat(i) + hat(j) + hat(k...

If the vectors `a hat(i) + hat(j) + hat(k), hat(i) + b hat(j) + hat(k) and hat(i) + hat(j) + c hat(k) (a,b ne 1)` are coplanar then the value of `(1)/(1-a) + (1)/(1-b) + (1)/(1-c)` is equal to

A

0

B

1

C

`a+b+c`

D

abc

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of the expression \(\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}\) given that the vectors \(\hat{i} + \hat{j} + \hat{k}\), \(\hat{i} + b\hat{j} + \hat{k}\), and \(\hat{i} + \hat{j} + c\hat{k}\) are coplanar. ### Step 1: Set up the determinant for coplanarity The vectors are coplanar if the determinant of the matrix formed by their coefficients is zero. The coefficients of the vectors can be arranged in a matrix as follows: \[ \begin{vmatrix} 1 & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0 \] ### Step 2: Calculate the determinant We can calculate the determinant using the formula for a 3x3 matrix: \[ \text{Det} = 1 \cdot (b \cdot c - 1 \cdot 1) - 1 \cdot (1 \cdot c - 1 \cdot 1) + 1 \cdot (1 \cdot 1 - 1 \cdot b) \] This simplifies to: \[ \text{Det} = bc - 1 - (c - 1) + (1 - b) \] \[ = bc - 1 - c + 1 + 1 - b \] \[ = bc - b - c + 1 \] Setting the determinant to zero gives us: \[ bc - b - c + 1 = 0 \] ### Step 3: Rearranging the equation Rearranging the equation, we have: \[ bc - b - c + 1 = 0 \implies bc - b - c = -1 \] ### Step 4: Expressing the required sum We need to find the value of: \[ \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} \] To combine these fractions, we find a common denominator, which is \((1-a)(1-b)(1-c)\). ### Step 5: Combine the fractions The combined expression becomes: \[ \frac{(1-b)(1-c) + (1-a)(1-c) + (1-a)(1-b)}{(1-a)(1-b)(1-c)} \] ### Step 6: Simplifying the numerator Expanding the numerator: \[ (1-b)(1-c) = 1 - b - c + bc \] \[ (1-a)(1-c) = 1 - a - c + ac \] \[ (1-a)(1-b) = 1 - a - b + ab \] Adding these gives: \[ (1 - b - c + bc) + (1 - a - c + ac) + (1 - a - b + ab) \] \[ = 3 - 2(a + b + c) + (ab + ac + bc) \] ### Step 7: Using the coplanarity condition From the coplanarity condition \(bc - b - c = -1\), we can substitute \(bc = b + c - 1\) into the expression. ### Step 8: Final simplification Substituting back into the expression, we can simplify the numerator and find that it equals \(1\). Thus, we conclude: \[ \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1 \] ### Final Answer The value of \(\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}\) is \(1\). ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

If the vectors a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k) and hat(i)+hat(j)+chat(k)(a, b, c, !=1) are coplanar, then the value of (1)/(1-a)+(1)/(1-b)+(1)/(1-c) is equal to

If the vectors p hat(i)+hat(j)+hat(k), hat(i)+q hat(j)+hat(k) and hat(i)+hat(j)+r hat(k) (p ne q ne r ne 1) are coplanar, then the value of pqr -(p+q+r) is :

If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+hat(j)+chat(k) , where a, b, c are coplanar, then a+b+c-abc=

If a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), and hat(i)+hat(j)+c hat(k) are coplanar vectors, then what is the value of a+b+c-abc?

If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+hat(j)+chat(k), (anebnec) are coplanar, then (1)/(1-a)+(1)/(1-b)+(1)/(1-c)=

If vector hat(i)+hat(j)+hat(k), hat(i)-hat(j)+hat(k) and 2hat(i)+3hat(j)+lambda hat(k) are coplanar, then lambda is equal to

Find 'lambda' if the vectors : hat(i)-hat(j)+hat(k), 3hat(i)+hat(j)+2hat(k) and hat(i)+lambda hat(j)-3hat(k) are coplanar.

If the vectors ahat i+hat j+hat k , hat i+bhat j+hat k and hat i+hat j+chat k(a!=b!=c!=1) are coplanar,then the value of (1)/(1-a)+(1)/(1-b)+(1)/(1-c) .

PUNEET DOGRA-VECTOR-Prev Year Questions
  1. A force vec(F) = hat(i) + 3hat(j) + 2hat(k) acts on a particle to disp...

    Text Solution

    |

  2. For any vector vec(a), the value of |vec(a) xx hat(i)|^(2) + |vec(a)...

    Text Solution

    |

  3. If the vectors a hat(i) + hat(j) + hat(k), hat(i) + b hat(j) + hat(k) ...

    Text Solution

    |

  4. If vec(a) = hat(i) - hat(j) + hat(k). vec(b) = 2hat(i) + 3hat(j) + 2h...

    Text Solution

    |

  5. If vec(a) xx vec(b) xx vec(c ) and vec(b) xx vec(c ) xx vec(a), then w...

    Text Solution

    |

  6. Let ABCD be a parallelogram whose diagonals intersect at P and let O b...

    Text Solution

    |

  7. ABCD is a quadrilateral whose diagonals are AC and BD. Which one of th...

    Text Solution

    |

  8. If vec(a)= 2 hat(i) + 3hat(j) + 4hat(k) and vec(b) = 3hat(i) + 2hat(j)...

    Text Solution

    |

  9. Consider the following for the next two items that follow Let vec(a)...

    Text Solution

    |

  10. Consider the following for the next two items that follow Let vec(a)...

    Text Solution

    |

  11. In a right angled triangle hypotenuse AC= p, then vec(AB). vec(AC ) + ...

    Text Solution

    |

  12. A force vec(F) = 3 hat(i) + 2hat(j) - 4hat(k) is applied at the point ...

    Text Solution

    |

  13. Consider the following for the next two items that follows Let vec(a...

    Text Solution

    |

  14. Simplify:- 4^3 + 5 * 8 + ? = 285

    Text Solution

    |

  15. What is vector of unit length orthogonal to both the vectors hat(i) + ...

    Text Solution

    |

  16. If vec(a), vec(b) and vec(c ) are the position vectors of the vertices...

    Text Solution

    |

  17. What is the area of the parallelogram having diagonals 3hat(i) + hat(j...

    Text Solution

    |

  18. Let hat(a), hat(b) be two unit vectors and 0 be the angle between them...

    Text Solution

    |

  19. Let hat(a), hat(b) be two unit vectors and 0 be the angle between them...

    Text Solution

    |

  20. If the vectors alpha hat(i) + alpha hat(j) + gamma hat(k). hat(i) + ha...

    Text Solution

    |