Home
Class 14
MATHS
If vec(a) = hat(i) - hat(j) + hat(k). v...

If `vec(a) = hat(i) - hat(j) + hat(k). vec(b) = 2hat(i) + 3hat(j) + 2hat(k) and vec(c ) = hat(i) + m hat(j) + n hat(k)` are three coplanar vectors and `|vec(c )| = sqrt6`, then which one of the following is correct?

A

`m=2 and n = +-1`

B

`m = +-2 and n = -1`

C

`m =2 and n = -1`

D

`m = +-2 and n = 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given vectors and their properties. Let's break down the solution step by step. ### Step 1: Define the vectors We have three vectors: - \(\vec{a} = \hat{i} - \hat{j} + \hat{k}\) - \(\vec{b} = 2\hat{i} + 3\hat{j} + 2\hat{k}\) - \(\vec{c} = \hat{i} + m\hat{j} + n\hat{k}\) ### Step 2: Find the modulus of vector \(\vec{c}\) The modulus of vector \(\vec{c}\) is given as \(|\vec{c}| = \sqrt{6}\). The modulus of a vector \(\vec{c} = \hat{i} + m\hat{j} + n\hat{k}\) is calculated using the formula: \[ |\vec{c}| = \sqrt{1^2 + m^2 + n^2} = \sqrt{1 + m^2 + n^2} \] Setting this equal to \(\sqrt{6}\), we have: \[ \sqrt{1 + m^2 + n^2} = \sqrt{6} \] Squaring both sides gives: \[ 1 + m^2 + n^2 = 6 \] Thus, we can simplify this to: \[ m^2 + n^2 = 5 \quad \text{(Equation 1)} \] ### Step 3: Use the coplanarity condition The vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are coplanar. For three vectors to be coplanar, the scalar triple product (box product) must equal zero: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = 0 \] We can express this as a determinant: \[ \begin{vmatrix} 1 & -1 & 1 \\ 2 & 3 & 2 \\ 1 & m & n \end{vmatrix} = 0 \] Calculating this determinant, we expand it: \[ = 1 \begin{vmatrix} 3 & 2 \\ m & n \end{vmatrix} - (-1) \begin{vmatrix} 2 & 2 \\ 1 & n \end{vmatrix} + 1 \begin{vmatrix} 2 & 3 \\ 1 & m \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \(3n - 2m\) 2. \(2n - 2\) 3. \(2m - 3\) Putting it all together: \[ (3n - 2m) + (2n - 2) + (2m - 3) = 0 \] Simplifying this gives: \[ 5n + 0m - 5 = 0 \] Thus: \[ 5n = 5 \implies n = 1 \quad \text{(Equation 2)} \] ### Step 4: Substitute \(n\) back into Equation 1 Now that we have \(n = 1\), we can substitute this into Equation 1: \[ m^2 + 1^2 = 5 \] This simplifies to: \[ m^2 + 1 = 5 \implies m^2 = 4 \] Taking the square root gives: \[ m = 2 \quad \text{or} \quad m = -2 \] ### Final Result Thus, the values of \(m\) and \(n\) are: - \(m = 2\) or \(m = -2\) - \(n = 1\) ### Conclusion The correct option based on the values derived is that \(m\) can be \(2\) or \(-2\) and \(n\) is \(1\). ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=hat(i)-hat(j)+hat(k), vec(b) = 2 hat(i) + 3 hat( j) + 2 hat(k) and vec(c) = hat(i) - m hat(j) + n hat(k) are three coplanar vectors and |vec(c)|=sqrt(6) , then which one of the following is correct?

Show that the vectors : vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=-2hat(i)+3hat(j)-4hat(k) and vec(c )=hat(i)-3hat(j)+5hat(k) are coplanar.

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

If vec(a)=2hat(i)+hat(j)+3hat(k),vec(b)=-hat(i)+2hat(j)+hat(k) , and vec(c)=-3hat(i)+hat(j)+2hat(k) , find [hat(a)hat(b)hat(c)] .

Find [vec(a)vec(b)vec(c )] if vec(a)=vec(i)-2hat(j)+3hat(k), vec(b)=2hat(i)-3hat(j)+hat(k) and vec(c )=3hat(i)+hat(j)-2hat(k) .

If vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) and vec(c )=hat(i)-6hat(j)-7hat(k) , then find the value of |vec(a)+vec(b)+vec(c )| .

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

PUNEET DOGRA-VECTOR-Prev Year Questions
  1. For any vector vec(a), the value of |vec(a) xx hat(i)|^(2) + |vec(a)...

    Text Solution

    |

  2. If the vectors a hat(i) + hat(j) + hat(k), hat(i) + b hat(j) + hat(k) ...

    Text Solution

    |

  3. If vec(a) = hat(i) - hat(j) + hat(k). vec(b) = 2hat(i) + 3hat(j) + 2h...

    Text Solution

    |

  4. If vec(a) xx vec(b) xx vec(c ) and vec(b) xx vec(c ) xx vec(a), then w...

    Text Solution

    |

  5. Let ABCD be a parallelogram whose diagonals intersect at P and let O b...

    Text Solution

    |

  6. ABCD is a quadrilateral whose diagonals are AC and BD. Which one of th...

    Text Solution

    |

  7. If vec(a)= 2 hat(i) + 3hat(j) + 4hat(k) and vec(b) = 3hat(i) + 2hat(j)...

    Text Solution

    |

  8. Consider the following for the next two items that follow Let vec(a)...

    Text Solution

    |

  9. Consider the following for the next two items that follow Let vec(a)...

    Text Solution

    |

  10. In a right angled triangle hypotenuse AC= p, then vec(AB). vec(AC ) + ...

    Text Solution

    |

  11. A force vec(F) = 3 hat(i) + 2hat(j) - 4hat(k) is applied at the point ...

    Text Solution

    |

  12. Consider the following for the next two items that follows Let vec(a...

    Text Solution

    |

  13. Simplify:- 4^3 + 5 * 8 + ? = 285

    Text Solution

    |

  14. What is vector of unit length orthogonal to both the vectors hat(i) + ...

    Text Solution

    |

  15. If vec(a), vec(b) and vec(c ) are the position vectors of the vertices...

    Text Solution

    |

  16. What is the area of the parallelogram having diagonals 3hat(i) + hat(j...

    Text Solution

    |

  17. Let hat(a), hat(b) be two unit vectors and 0 be the angle between them...

    Text Solution

    |

  18. Let hat(a), hat(b) be two unit vectors and 0 be the angle between them...

    Text Solution

    |

  19. If the vectors alpha hat(i) + alpha hat(j) + gamma hat(k). hat(i) + ha...

    Text Solution

    |

  20. The area of the square, one of whose diagonals is 3hat(i)+ 4hat(j) is:

    Text Solution

    |