Home
Class 14
MATHS
Consider the following for the next two ...

Consider the following for the next two items that follow
Let `vec(a).vec(b) and vec(c )` be three vectors such that `vec(a) +vec(b) + vec(c )= vec(0) and |vec(a)|= 10 |vec(b)| =6 and |vec(c )|=14`.
What is `vec(a).vec(b) + vec(b).vec(c ) + vec(c ).vec(a)` equal to ?

A

`-332`

B

`-166`

C

0

D

166

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} \) given the conditions \( \vec{a} + \vec{b} + \vec{c} = \vec{0} \) and the magnitudes of the vectors. ### Step-by-Step Solution: 1. **Understand the given information**: - We have three vectors \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \). - The sum of the vectors is \( \vec{a} + \vec{b} + \vec{c} = \vec{0} \). - The magnitudes are given as: - \( |\vec{a}| = 10 \) - \( |\vec{b}| = 6 \) - \( |\vec{c}| = 14 \) 2. **Use the identity for the square of the sum of vectors**: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \] Since \( \vec{a} + \vec{b} + \vec{c} = \vec{0} \), we have: \[ |\vec{0}|^2 = 0 \] 3. **Calculate the squares of the magnitudes**: - \( |\vec{a}|^2 = 10^2 = 100 \) - \( |\vec{b}|^2 = 6^2 = 36 \) - \( |\vec{c}|^2 = 14^2 = 196 \) 4. **Substitute the values into the identity**: \[ 0 = 100 + 36 + 196 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \] 5. **Combine the constants**: \[ 0 = 332 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \] 6. **Isolate the dot product sum**: \[ 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = -332 \] \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -166 \] ### Final Answer: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -166 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

Consider the following for the next two items that follow Let vec(a).vec(b) and vec(c ) be three vectors such that vec(a) +vec(b) + vec(c )= vec(0) and |vec(a)|= 10 |vec(b)| =6 and |vec(c )|=14 . What is the angle between vec(a) and vec(b) ?

Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec(a)|=10, |vec(b)|=6 and |vec(c) |=14 . What is vec(a). vec(b) + vec(b).vec(c)+ vec(c). vec(a) . equal to ?

Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec(a)|=10, |vec(b)|=6 and |vec(c) |=14 . What is the angle between vec(a) and vec(b) ?

vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(c)|=7 . What is vec (a). vec(b) + vec(b). vec(c) + vec(c). vec (a) equal to ?

If vec(a),vec(b) and vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=vec(0) and |vec(a)|=2,|vec(b)|=3 and |vec(c )|=5 , then the value of vec(a)*vec(b)+vec(b)*vec(c)+vec(c)*vec(a) is

If vec(a) , vec(b) and vec(c ) be three vectors such that vec(a) + vec(b) + vec(c )=0 and |vec(a)|=3, |vec(b)|=5,|vec(C )|=7 , find the angle between vec(a) and vec(b) .

vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(c)|=7 . What is |vec(a)+vec(b)| equal to ?

If the vectors vec(a), vec(b) and vec(c ) satisfy the condition vec(a)+vec(b)+vec(c )=vec(0) and |vec(a)|=3, |vec(b)| =4 and |vec(c )|=5 , then show that vec(a).vec(b)+vec(b).vec(c )+vec(c ). vec(a)=-25 .

Let vec a , vec b , vec c are three vectors , such that vec a + vec b + vec c = vec 0 .If , |vec a|=3 , |vec b|=4 and | vec c|=5 , then the value of, |vec a+vec b|^(2) + |vec b-vec c|^(2) + |vec c+vec a|^(2) , equal to :

If vec a,vec b and vec c be any three vectors then show that vec a+(vec b+vec c)=(vec a+vec b)+vec c

PUNEET DOGRA-VECTOR-Prev Year Questions
  1. ABCD is a quadrilateral whose diagonals are AC and BD. Which one of th...

    Text Solution

    |

  2. If vec(a)= 2 hat(i) + 3hat(j) + 4hat(k) and vec(b) = 3hat(i) + 2hat(j)...

    Text Solution

    |

  3. Consider the following for the next two items that follow Let vec(a)...

    Text Solution

    |

  4. Consider the following for the next two items that follow Let vec(a)...

    Text Solution

    |

  5. In a right angled triangle hypotenuse AC= p, then vec(AB). vec(AC ) + ...

    Text Solution

    |

  6. A force vec(F) = 3 hat(i) + 2hat(j) - 4hat(k) is applied at the point ...

    Text Solution

    |

  7. Consider the following for the next two items that follows Let vec(a...

    Text Solution

    |

  8. Simplify:- 4^3 + 5 * 8 + ? = 285

    Text Solution

    |

  9. What is vector of unit length orthogonal to both the vectors hat(i) + ...

    Text Solution

    |

  10. If vec(a), vec(b) and vec(c ) are the position vectors of the vertices...

    Text Solution

    |

  11. What is the area of the parallelogram having diagonals 3hat(i) + hat(j...

    Text Solution

    |

  12. Let hat(a), hat(b) be two unit vectors and 0 be the angle between them...

    Text Solution

    |

  13. Let hat(a), hat(b) be two unit vectors and 0 be the angle between them...

    Text Solution

    |

  14. If the vectors alpha hat(i) + alpha hat(j) + gamma hat(k). hat(i) + ha...

    Text Solution

    |

  15. The area of the square, one of whose diagonals is 3hat(i)+ 4hat(j) is:

    Text Solution

    |

  16. Let ABCD be a parallelogram whose diagonals intersect at P and let O b...

    Text Solution

    |

  17. If vec(b) and vec(c ) are the position vectors of the points B and C r...

    Text Solution

    |

  18. If the position vector vec(a) of the point (5, n) is such that |vec(a)...

    Text Solution

    |

  19. If |vec(a)|=2 and |vec(b)|=3, then |vec(a) xx vec(b)|^(2)+ |vec(a).vec...

    Text Solution

    |

  20. Consider the following inequalities in respect of vector vec(a) and ve...

    Text Solution

    |