Home
Class 14
MATHS
In a right angled triangle hypotenuse AC...

In a right angled triangle hypotenuse AC= p, then `vec(AB). vec(AC ) + vec(BC) .vec(BA) + vec(CA). vec(CB)` equal to ?

A

A) `p`

B

B) `p^(2)`

C

C) `2p^(2)`

D

D) `(p^(2))/(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

If in a right-angled triangle ABC, hypotenuse AC=p, then what is vec(AB).vec(AC)+vec(BC).vec(BA)+vec(CA).vec(CB) equal to ?

In a right angled triangle ABC, the hypotenuse AB =p, then vec(AB).vec(AC) + vec(BC).vec(BA)+vec(CA).vec(CB) is equal to:

If in a right-angled triangle ABC, the hypotenuse AB=p, then vec AB.AC+vec BC*vec BA+vec CA.vec CB is equal to 2p^(2) b.(p^(2))/(2) c.p^(2) d.none of these

In a right angled triangle ABC.the hypotenuse AB=p,then AB.AC+BC.BA+CA.CB

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

In a regular hexagon ABCDEF, prove that vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=3vec(AD)

A parallelogram ABCD. Prove that vec(AC)+ vec (BD) = 2 vec(BC) '

ABCD is a parallelogram . If vec(AB)=vec(a), vec(BC)=vec(b) , then what vec(BD) equal to ?

In Fig. ABCDEF is a ragular hexagon. Prove that vec(AB) +vec(AC) +vec(AD) +vec(AE) +vec(AF) = 6 vec(AO) .

PUNEET DOGRA-VECTOR-Prev Year Questions
  1. Consider the following for the next two items that follow Let vec(a)...

    Text Solution

    |

  2. Consider the following for the next two items that follow Let vec(a)...

    Text Solution

    |

  3. In a right angled triangle hypotenuse AC= p, then vec(AB). vec(AC ) + ...

    Text Solution

    |

  4. A force vec(F) = 3 hat(i) + 2hat(j) - 4hat(k) is applied at the point ...

    Text Solution

    |

  5. Consider the following for the next two items that follows Let vec(a...

    Text Solution

    |

  6. Simplify:- 4^3 + 5 * 8 + ? = 285

    Text Solution

    |

  7. What is vector of unit length orthogonal to both the vectors hat(i) + ...

    Text Solution

    |

  8. If vec(a), vec(b) and vec(c ) are the position vectors of the vertices...

    Text Solution

    |

  9. What is the area of the parallelogram having diagonals 3hat(i) + hat(j...

    Text Solution

    |

  10. Let hat(a), hat(b) be two unit vectors and 0 be the angle between them...

    Text Solution

    |

  11. Let hat(a), hat(b) be two unit vectors and 0 be the angle between them...

    Text Solution

    |

  12. If the vectors alpha hat(i) + alpha hat(j) + gamma hat(k). hat(i) + ha...

    Text Solution

    |

  13. The area of the square, one of whose diagonals is 3hat(i)+ 4hat(j) is:

    Text Solution

    |

  14. Let ABCD be a parallelogram whose diagonals intersect at P and let O b...

    Text Solution

    |

  15. If vec(b) and vec(c ) are the position vectors of the points B and C r...

    Text Solution

    |

  16. If the position vector vec(a) of the point (5, n) is such that |vec(a)...

    Text Solution

    |

  17. If |vec(a)|=2 and |vec(b)|=3, then |vec(a) xx vec(b)|^(2)+ |vec(a).vec...

    Text Solution

    |

  18. Consider the following inequalities in respect of vector vec(a) and ve...

    Text Solution

    |

  19. If the magnitude of difference of two unit vectors is sqrt3, then the ...

    Text Solution

    |

  20. The vectors vec(a), vec(b), vec(c ) and vec(d) are such that vec(a) xx...

    Text Solution

    |