Home
Class 14
MATHS
Consider the following for the next two ...

Consider the following for the next two items that follows
Let `vec(a) = hat(i) + hat(j), vec(b)= 3hat(i) + 4hat(k) and vec(b) =vec(c ) +vec(d)`, where `vec(c )` is parallel to `vec(a) and vec(d)` is perpendicular to `vec(a)`
What is `vec(c )` equal to ?

A

`(3 (hat(i) + hat(j)))/(2)`

B

`(2 (hat(i) + hat(j)))/(3)`

C

`((hat(i) + hat(j)))/(2)`

D

`((hat(i) + hat(j)))/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector \(\vec{c}\), we can follow these steps: ### Step 1: Understand the given vectors We have: \[ \vec{a} = \hat{i} + \hat{j} \] \[ \vec{b} = 3\hat{i} + 4\hat{k} \] And we know: \[ \vec{b} = \vec{c} + \vec{d} \] where \(\vec{c}\) is parallel to \(\vec{a}\) and \(\vec{d}\) is perpendicular to \(\vec{a}\). ### Step 2: Calculate the dot product Taking the dot product of both sides of the equation \(\vec{b} = \vec{c} + \vec{d}\) with \(\vec{a}\): \[ \vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{d} \] ### Step 3: Compute \(\vec{a} \cdot \vec{b}\) Calculating \(\vec{a} \cdot \vec{b}\): \[ \vec{a} \cdot \vec{b} = (\hat{i} + \hat{j}) \cdot (3\hat{i} + 4\hat{k}) = 3(\hat{i} \cdot \hat{i}) + 4(\hat{j} \cdot \hat{k}) = 3 \cdot 1 + 0 = 3 \] ### Step 4: Substitute into the dot product equation Now substituting back into the equation: \[ 3 = \vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{d} \] ### Step 5: Analyze the components Since \(\vec{c}\) is parallel to \(\vec{a}\), we can express \(\vec{c}\) as: \[ \vec{c} = k(\hat{i} + \hat{j}) \] for some scalar \(k\). ### Step 6: Calculate \(\vec{a} \cdot \vec{c}\) Now, calculating \(\vec{a} \cdot \vec{c}\): \[ \vec{a} \cdot \vec{c} = (\hat{i} + \hat{j}) \cdot (k(\hat{i} + \hat{j})) = k(\hat{i} \cdot \hat{i} + \hat{j} \cdot \hat{j}) = k(1 + 1) = 2k \] ### Step 7: Substitute back into the equation Now substituting into the equation: \[ 3 = 2k + \vec{a} \cdot \vec{d} \] Since \(\vec{d}\) is perpendicular to \(\vec{a}\), \(\vec{a} \cdot \vec{d} = 0\). Therefore: \[ 3 = 2k \implies k = \frac{3}{2} \] ### Step 8: Find \(\vec{c}\) Now substituting \(k\) back into the expression for \(\vec{c}\): \[ \vec{c} = \frac{3}{2}(\hat{i} + \hat{j}) = \frac{3}{2}\hat{i} + \frac{3}{2}\hat{j} \] ### Final Answer Thus, the vector \(\vec{c}\) is: \[ \vec{c} = \frac{3}{2} \hat{i} + \frac{3}{2} \hat{j} \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

Let vec(a) = hat(i) + hat(j), vec(b) = 3 hat(i) + 4 hat(k) and vec (b) = vec(c) + vec(d) , where vec(c) is parallel to vec(a) and vec(d) is perpendicular to vec(a) . What is vec(c) equal to ?

Consider the following for the next two items that follow Let vec a=hat i+hat j, vec b =3 hat i+4 hat k and vec b=vec c + vec d where vec c is parallel to vec a and vec d is perpendiculart o vec a What is vec c equal to? If vec d = xhat i+ yhat j+ zhat k, then which of the following equations is/are correct? 1) y-x=4 2)2z-3=0 Select the correct answer using the code given below: (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2

If vec(a)=2hat(i)+2 hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=3hat(i)+hat(j) are three vectors such that vec(a)+t vec(b) is perpendicular to vec(c) , then what is t equal to ?

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?

Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

Vectors vec(a)=hat(i)+hat(j)+hat(k), vec(b)=hat(j)+3hat(k) and vec(c )=hat(i)-2hat(j)+hat(k) are given. Find vector vec(d) if vec(d) is perpendicular to vec(c ) and vec(d).vec(a)=6, vec(d).vec(b)=11 .

PUNEET DOGRA-VECTOR-Prev Year Questions
  1. In a right angled triangle hypotenuse AC= p, then vec(AB). vec(AC ) + ...

    Text Solution

    |

  2. A force vec(F) = 3 hat(i) + 2hat(j) - 4hat(k) is applied at the point ...

    Text Solution

    |

  3. Consider the following for the next two items that follows Let vec(a...

    Text Solution

    |

  4. Simplify:- 4^3 + 5 * 8 + ? = 285

    Text Solution

    |

  5. What is vector of unit length orthogonal to both the vectors hat(i) + ...

    Text Solution

    |

  6. If vec(a), vec(b) and vec(c ) are the position vectors of the vertices...

    Text Solution

    |

  7. What is the area of the parallelogram having diagonals 3hat(i) + hat(j...

    Text Solution

    |

  8. Let hat(a), hat(b) be two unit vectors and 0 be the angle between them...

    Text Solution

    |

  9. Let hat(a), hat(b) be two unit vectors and 0 be the angle between them...

    Text Solution

    |

  10. If the vectors alpha hat(i) + alpha hat(j) + gamma hat(k). hat(i) + ha...

    Text Solution

    |

  11. The area of the square, one of whose diagonals is 3hat(i)+ 4hat(j) is:

    Text Solution

    |

  12. Let ABCD be a parallelogram whose diagonals intersect at P and let O b...

    Text Solution

    |

  13. If vec(b) and vec(c ) are the position vectors of the points B and C r...

    Text Solution

    |

  14. If the position vector vec(a) of the point (5, n) is such that |vec(a)...

    Text Solution

    |

  15. If |vec(a)|=2 and |vec(b)|=3, then |vec(a) xx vec(b)|^(2)+ |vec(a).vec...

    Text Solution

    |

  16. Consider the following inequalities in respect of vector vec(a) and ve...

    Text Solution

    |

  17. If the magnitude of difference of two unit vectors is sqrt3, then the ...

    Text Solution

    |

  18. The vectors vec(a), vec(b), vec(c ) and vec(d) are such that vec(a) xx...

    Text Solution

    |

  19. The adjacent sides AB and AC of a triangle ABC are represented by the ...

    Text Solution

    |

  20. A force F= 3hat(i) + 4hat(j) - 3hat(k) is applied at the point P. whos...

    Text Solution

    |