Home
Class 14
MATHS
What is the area of Delta OAB, where O i...

What is the area of `Delta OAB`, where O is the origin, `OA= 3 hat(i) - hat(j) + hat(k) and OB= 2 hat(i) + hat(j)- 3hat(k)` ?

A

A) `5 sqrt6` sq units

B

B) `(5 sqrt6)/(2)` sq units

C

C) `sqrt6` sq units

D

D) `sqrt30` sq units

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of triangle OAB where O is the origin, OA = \(3 \hat{i} - \hat{j} + \hat{k}\) and OB = \(2 \hat{i} + \hat{j} - 3 \hat{k}\), we can follow these steps: ### Step 1: Identify the vectors OA and OB Given: - \( \vec{OA} = 3 \hat{i} - \hat{j} + \hat{k} \) - \( \vec{OB} = 2 \hat{i} + \hat{j} - 3 \hat{k} \) ### Step 2: Use the formula for the area of triangle in terms of vectors The area \(A\) of triangle OAB can be calculated using the formula: \[ A = \frac{1}{2} |\vec{OA} \times \vec{OB}| \] where \(\times\) denotes the cross product. ### Step 3: Calculate the cross product \(\vec{OA} \times \vec{OB}\) To find the cross product, we can use the determinant method: \[ \vec{OA} \times \vec{OB} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 1 \\ 2 & 1 & -3 \end{vmatrix} \] ### Step 4: Expand the determinant Expanding the determinant: \[ \vec{OA} \times \vec{OB} = \hat{i} \begin{vmatrix} -1 & 1 \\ 1 & -3 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 1 \\ 2 & -3 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & -1 \\ 2 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \(\hat{i}\): \[ (-1)(-3) - (1)(1) = 3 - 1 = 2 \] 2. For \(-\hat{j}\): \[ (3)(-3) - (1)(2) = -9 - 2 = -11 \quad \Rightarrow \quad +11 \hat{j} \] 3. For \(\hat{k}\): \[ (3)(1) - (-1)(2) = 3 + 2 = 5 \] Combining these results: \[ \vec{OA} \times \vec{OB} = 2 \hat{i} + 11 \hat{j} + 5 \hat{k} \] ### Step 5: Calculate the magnitude of the cross product Now, we find the magnitude: \[ |\vec{OA} \times \vec{OB}| = \sqrt{(2)^2 + (11)^2 + (5)^2} = \sqrt{4 + 121 + 25} = \sqrt{150} \] ### Step 6: Simplify the magnitude \[ \sqrt{150} = \sqrt{25 \times 6} = 5\sqrt{6} \] ### Step 7: Calculate the area of triangle OAB Substituting back into the area formula: \[ A = \frac{1}{2} |\vec{OA} \times \vec{OB}| = \frac{1}{2} (5\sqrt{6}) = \frac{5\sqrt{6}}{2} \] ### Final Answer Thus, the area of triangle OAB is: \[ \frac{5\sqrt{6}}{2} \text{ square units} \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

What is the area of the triangle OAB where O is the origin, vec(OA)=3hat(i)-hat(j)+hat(k) and vec(OB)=2hat(i)+hat(j)-3hat(k) ?

What is the area of the parallelogram having diagonals 3hat(i) + hat(j) - 2 hat(k) and hat(i) - 3 hat(j) + 4 hat(k) ?

What is the value of lamda for which the vectors hat(i) - hat(j) + hat(k), 2hat(i) + hat(j)- hat(k) and lamda hat(i) - hat(j)+ lamda (k) are coplanar

Show that the following points whose position vectors are given are collinear : (i) 5 hat(i) + 5 hat(k), 2 hat(i) + hat(j) + 3 hat(k) and - 4 hat(i) + 3 hat(j) - hat(k) (ii) - 2 hat(i) + 3 hat(j) + 5 hat(k), hat(i) + 2 hat(j) + 3 hat(k) and 7 hat(i) - hat(k) .

The area of the triangle whose adjacent sides are : vec(a)=3hat(i)+hat(j)+4hat(k) and vec(b)=hat(i)-hat(j)+hat(k) is :

What is the value of lambda for which the vectors hat(i)-hat(j)+hat(k), 2 hat(i)+hat(j)-hat(k) and lambda hat(i)-hat(j)+lambda hat(k) are co-planar?

Find a unit vector perpendicular to A=2hat(i)+3hat(j)+hat(k) and B=hat(i)-hat(j)+hat(k) both.

The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3hat(i)-hat(j)+2hat(k) is :

Area of rhombus is ......., where diagonals are a=2hat(i)-3hat(j)+5hat(k) and b=-hat(i)+hat(j)+hat(k)

PUNEET DOGRA-VECTOR-Prev Year Questions
  1. If |a|=2, |b|=5 and |a xx b|=8, then what is a, b equal to ?

    Text Solution

    |

  2. If |a+b|= |a-b|, then which one of the following is correct?

    Text Solution

    |

  3. What is the area of Delta OAB, where O is the origin, OA= 3 hat(i) - h...

    Text Solution

    |

  4. A vector perpendicular to (hat(i)+hat(j)+hat(k)) and (hat(i)-hat(j)-...

    Text Solution

    |

  5. What is the interior acute angle of the parallelogram whose sides are ...

    Text Solution

    |

  6. For what value of lamda are the vectors lamda hat(i)+ (1+ lamda) hat(j...

    Text Solution

    |

  7. Read the following information carefully and answer the questions give...

    Text Solution

    |

  8. Read the following information carefully and answer the questions give...

    Text Solution

    |

  9. Read the following information carefully and answer the questions give...

    Text Solution

    |

  10. Read the following information carefully and answer the questions give...

    Text Solution

    |

  11. Consider the vectors a = i- 2j + k and b= 4i- 4j + 7k What is the sc...

    Text Solution

    |

  12. Consider the vectors a = i- 2j + k and b= 4i- 4j + 7k What is the ve...

    Text Solution

    |

  13. Let a vector r make angles 60^(@), 30^(@) with X and Y -axis, respecti...

    Text Solution

    |

  14. Let a vector r make angles 60^(@), 30^(@) with X and Y -axis, respecti...

    Text Solution

    |

  15. The vertices of a Delta ABC are A (2, 3, 1), B (-2, 2, 0) and C(0, 1, ...

    Text Solution

    |

  16. The vertices of a Delta ABC are A (2, 3, 1), B (-2, 2, 0) and C(0, 1, ...

    Text Solution

    |

  17. Vertices of a triangle are A(3, 1, 2), B(1, -1, 2) and C(2, 1, 1). ...

    Text Solution

    |

  18. Let |a|=7, |b|=11, |a+b|=10 sqrt3 What is |a-b| equal to ?

    Text Solution

    |

  19. Let |a|=7, |b|=11, |a+b|=10 sqrt3 What is the angle between (a+b) an...

    Text Solution

    |

  20. If the angle between the vectors hat(i)- m hat(j) and hat(j) + hat(k) ...

    Text Solution

    |