Home
Class 14
MATHS
What is the projection of the vector hat...

What is the projection of the vector `hat(i)-2 hat(j) + hat(k)` on the vector `4hat(i) - 4hat(j)+ 7hat(k)`?

A

`(sqrt5)/(2)`

B

`(19)/(9)`

C

`(sqrt5)/(4)`

D

`(11)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the projection of the vector **A** = \( \hat{i} - 2\hat{j} + \hat{k} \) on the vector **B** = \( 4\hat{i} - 4\hat{j} + 7\hat{k} \), we can use the formula for the projection of vector **A** onto vector **B**: \[ \text{proj}_{\mathbf{B}} \mathbf{A} = \frac{\mathbf{A} \cdot \mathbf{B}}{\mathbf{B} \cdot \mathbf{B}} \mathbf{B} \] ### Step 1: Calculate the dot product \( \mathbf{A} \cdot \mathbf{B} \) \[ \mathbf{A} \cdot \mathbf{B} = (1)(4) + (-2)(-4) + (1)(7) \] \[ = 4 + 8 + 7 = 19 \] ### Step 2: Calculate the dot product \( \mathbf{B} \cdot \mathbf{B} \) \[ \mathbf{B} \cdot \mathbf{B} = (4)(4) + (-4)(-4) + (7)(7) \] \[ = 16 + 16 + 49 = 81 \] ### Step 3: Substitute the dot products into the projection formula \[ \text{proj}_{\mathbf{B}} \mathbf{A} = \frac{19}{81} \mathbf{B} \] ### Step 4: Write the projection vector Now, substitute **B** back into the equation: \[ \text{proj}_{\mathbf{B}} \mathbf{A} = \frac{19}{81} (4\hat{i} - 4\hat{j} + 7\hat{k}) \] \[ = \left(\frac{76}{81}\hat{i} - \frac{76}{81}\hat{j} + \frac{133}{81}\hat{k}\right) \] ### Step 5: Calculate the magnitude of the projection To find the magnitude of the projection, we can calculate: \[ \|\text{proj}_{\mathbf{B}} \mathbf{A}\| = \sqrt{\left(\frac{76}{81}\right)^2 + \left(-\frac{76}{81}\right)^2 + \left(\frac{133}{81}\right)^2} \] Calculating each term: \[ = \sqrt{\frac{5776}{6561} + \frac{5776}{6561} + \frac{17689}{6561}} \] \[ = \sqrt{\frac{28841}{6561}} = \frac{\sqrt{28841}}{81} \] ### Step 6: Simplify the square root Finding the square root of 28841: \[ \sqrt{28841} = 169 \] Thus, the magnitude of the projection is: \[ \|\text{proj}_{\mathbf{B}} \mathbf{A}\| = \frac{169}{81} \] ### Final Answer The projection of the vector \( \hat{i} - 2\hat{j} + \hat{k} \) on the vector \( 4\hat{i} - 4\hat{j} + 7\hat{k} \) is: \[ \frac{169}{81} \text{ or approximately } 2.0864 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

Find the projection of the vector hat i+3hat j+7hat k on the vector 7hat i-hat j+8hat k

Find the projection of the vector hat i+3hat j+7hat k on the vector 2hat i-3hat j+6hat k

Knowledge Check

  • What is the projection of the vector hat(i)-2hat(j)-hat(k) on the vector 4hat(i)-4hat(j)+7hat(k) ?

    A
    `(sqrt(5))/(2)`
    B
    `(19)/(9)`
    C
    `(sqrt(5))/(4)`
    D
    `(11)/(3)`
  • Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat(i) - 2hat(j) + 3hat(k) is :

    A
    `(2)/(sqrt(14))`
    B
    `(1)/(sqrt(14))`
    C
    `(3)/(sqrt(17))`
    D
    `(3)/(sqrt(14))`
  • The projection of the vector vec(A)= hat(i)-2hat(j)+hat(k) on the vector vec(B)= 4hat(i)-4hat(j)+7hat(k) is

    A
    `(19)/9`
    B
    `(38)/9`
    C
    `8/9`
    D
    `4/9`
  • Similar Questions

    Explore conceptually related problems

    Write the projection of vector hat i+hat j+hat k along the vector hat j.

    Writhe the projection of the vector 7hat i+hat j-4hat k on the vector 2hat i+6hat j+3hat k

    Write the projection of the vector hat i+3hat j+7hat k on the vector 2hat i-3hat j+6hat j+6hat j

    Find the projection of vector hat i+3hat j+7hat k on the vector 7hat i-hat j+8hat k

    Find the vector projection of the vector : 2hat(i)-hat(j)+hat(k) on hat(i)-2hat(j)+hat(k) .