Home
Class 14
MATHS
What is the sine of the angle between th...

What is the sine of the angle between the vectors `hat(i) + 2hat(j) + 3hat(k) and -hat(i) +2hat(j) + 3hat(k)`?

A

`sqrt((13)/(7))`

B

`(sqrt13)/(7)`

C

`(13)/(sqrt7)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the sine of the angle between the vectors \(\hat{i} + 2\hat{j} + 3\hat{k}\) and \(-\hat{i} + 2\hat{j} + 3\hat{k}\), we will follow these steps: ### Step 1: Define the Vectors Let: \[ \mathbf{A} = \hat{i} + 2\hat{j} + 3\hat{k} \] \[ \mathbf{B} = -\hat{i} + 2\hat{j} + 3\hat{k} \] ### Step 2: Compute the Cross Product The cross product \(\mathbf{A} \times \mathbf{B}\) can be calculated using the determinant of a matrix formed by the unit vectors and the components of \(\mathbf{A}\) and \(\mathbf{B}\): \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ -1 & 2 & 3 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 2 & 3 \\ 2 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 3 \\ -1 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ -1 & 2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} 2 & 3 \\ 2 & 3 \end{vmatrix} = 2 \cdot 3 - 3 \cdot 2 = 0\) 2. \(\begin{vmatrix} 1 & 3 \\ -1 & 3 \end{vmatrix} = 1 \cdot 3 - 3 \cdot (-1) = 3 + 3 = 6\) 3. \(\begin{vmatrix} 1 & 2 \\ -1 & 2 \end{vmatrix} = 1 \cdot 2 - 2 \cdot (-1) = 2 + 2 = 4\) Thus, we have: \[ \mathbf{A} \times \mathbf{B} = 0\hat{i} - 6\hat{j} + 4\hat{k} = -6\hat{j} + 4\hat{k} \] ### Step 3: Compute the Magnitude of the Cross Product The magnitude of \(\mathbf{A} \times \mathbf{B}\) is given by: \[ |\mathbf{A} \times \mathbf{B}| = \sqrt{(-6)^2 + 4^2} = \sqrt{36 + 16} = \sqrt{52} = 2\sqrt{13} \] ### Step 4: Compute the Magnitudes of the Vectors Now, we need to compute the magnitudes of \(\mathbf{A}\) and \(\mathbf{B}\): \[ |\mathbf{A}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14} \] \[ |\mathbf{B}| = \sqrt{(-1)^2 + 2^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14} \] ### Step 5: Use the Formula for Sine of the Angle The sine of the angle \(\theta\) between the two vectors can be found using the formula: \[ |\mathbf{A} \times \mathbf{B}| = |\mathbf{A}| |\mathbf{B}| \sin \theta \] Substituting the values we have: \[ 2\sqrt{13} = \sqrt{14} \cdot \sqrt{14} \cdot \sin \theta \] \[ 2\sqrt{13} = 14 \sin \theta \] \[ \sin \theta = \frac{2\sqrt{13}}{14} = \frac{\sqrt{13}}{7} \] ### Final Answer Thus, the sine of the angle between the vectors is: \[ \sin \theta = \frac{\sqrt{13}}{7} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

What is the sine of angle between the vectors hat(i)+2hat(j)+3hat(k) and -hat(i)+2hat(j)+3 hat(k) ?

Find the angle between the vectors hat(i)+3hat(j)+7hat(k) and 7hat(i)-hat(j)+8hat(k) .

The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3hat(i)-hat(j)+2hat(k) is :

The angle between two vectors -2hat(i)+3hat(j)+hat(k) and 2hat(i)+2hat(j)-4hat(k) is

The sine of the angle between vectors vec(a)=2hat(i)-6hat(j)-3hat(k) and vec(b)=4hat(i)+3hat(j)-hat(k)

Find the sine of the angle between the vectors vec(a) =(2 hat(i) - hat(j) + 3 hat(k)) and vec(b) = (hat(i) + 3 hat(j) + 2 hat(k)).

The angle between the vectors (hat i + hat j + hat k) and ( hat i - hat j -hat k) is

Find the angle between the vectors hat i-2hat j+3hat k and 3hat i-2hat j+hat k

Find he cosine of the angle between the vectors 4hat i-3hat j+3hat k and 2hat i-hat j-hat k

Determine the sine of the angle between the vectors . 2 hat I + 3 hat j -4 hat k and ( hat i-2 hat k).

PUNEET DOGRA-VECTOR-Prev Year Questions
  1. What is the projection of the vector hat(i)-2 hat(j) + hat(k) on the v...

    Text Solution

    |

  2. If the vector vec(a) lies in the planar of vectors vec(b) and vec(c ),...

    Text Solution

    |

  3. What is the sine of the angle between the vectors hat(i) + 2hat(j) + 3...

    Text Solution

    |

  4. If p, q, r and s be respectively the magnitude of the vectors 3hat(i)-...

    Text Solution

    |

  5. Which one of the following is the unit vector perpendicular to the vec...

    Text Solution

    |

  6. Consider the following statements in respect of the vectors vec(u)(1)=...

    Text Solution

    |

  7. If the position vector of a point p with respect to the origin O is ha...

    Text Solution

    |

  8. ABCD is a quadrilateral. Force vec(AB), vec(CB), vec(CD) and vec(DA) a...

    Text Solution

    |

  9. PQRS is a parallelogram, where vec(PQ) = 3hat(i) + 2hat(j) - m hat(k) ...

    Text Solution

    |

  10. What is the value of b such that the scalar product of the vector hat(...

    Text Solution

    |

  11. Let a, b and c b the distinct non-negative numbers. If the vectors a h...

    Text Solution

    |

  12. What is the vector equally inclined to the vectors hat(i)+ 3hat(j) and...

    Text Solution

    |

  13. Find the area of the triangle whose vertices are A(3, -1,2) ,B(1, - 1,...

    Text Solution

    |

  14. If   vec(a) = hat(i)- hat(k) , vec(b) = x hat(i) + hat(j) + (1-x) hat(...

    Text Solution

    |

  15. Consider the following statements 1. For any three vectors vec(a) ve...

    Text Solution

    |

  16. The vectors vec(a)= x hat(i) + z hat(k), vec(b) = hat(k), vec(c ) are ...

    Text Solution

    |

  17. Let vec(a) and vec(b) be two unit vectors and α be the angle between ...

    Text Solution

    |

  18. A vecotr vec(b) is collinear with the vector vec(a)= (2, 1, -1) and sa...

    Text Solution

    |

  19. What is the value of lamda for which the vectors hat(i) - hat(j) + hat...

    Text Solution

    |

  20. Find the area of the triangle whose vertices are A(3, -1,2) ,B(1, - 1,...

    Text Solution

    |