Home
Class 14
MATHS
PQRS is a parallelogram, where vec(PQ) =...

PQRS is a parallelogram, where `vec(PQ) = 3hat(i) + 2hat(j) - m hat(k) and vec(PS) = hat(i) + 3hat(j) + hat(k)` and the area of the parallelogram is `sqrt90`. What is the value of m?

A

1

B

`-1`

C

2

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( m \) in the parallelogram \( PQRS \) given the vectors \( \vec{PQ} \) and \( \vec{PS} \) and the area of the parallelogram. ### Step-by-Step Solution: 1. **Identify the Given Vectors:** \[ \vec{PQ} = 3\hat{i} + 2\hat{j} - m\hat{k} \] \[ \vec{PS} = \hat{i} + 3\hat{j} + \hat{k} \] 2. **Calculate the Cross Product \( \vec{PQ} \times \vec{PS} \):** The area of the parallelogram can be calculated using the magnitude of the cross product of the two vectors: \[ \text{Area} = |\vec{PQ} \times \vec{PS}| \] To compute the cross product, we can use the determinant: \[ \vec{PQ} \times \vec{PS} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & -m \\ 1 & 3 & 1 \end{vmatrix} \] 3. **Expand the Determinant:** \[ \vec{PQ} \times \vec{PS} = \hat{i} \begin{vmatrix} 2 & -m \\ 3 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & -m \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & 2 \\ 1 & 3 \end{vmatrix} \] Calculating each of the 2x2 determinants: - For \( \hat{i} \): \[ 2 \cdot 1 - (-m) \cdot 3 = 2 + 3m \] - For \( \hat{j} \): \[ 3 \cdot 1 - (-m) \cdot 1 = 3 + m \] - For \( \hat{k} \): \[ 3 \cdot 3 - 2 \cdot 1 = 9 - 2 = 7 \] Thus, we have: \[ \vec{PQ} \times \vec{PS} = (2 + 3m)\hat{i} - (3 + m)\hat{j} + 7\hat{k} \] 4. **Magnitude of the Cross Product:** The magnitude of the vector is given by: \[ |\vec{PQ} \times \vec{PS}| = \sqrt{(2 + 3m)^2 + (3 + m)^2 + 7^2} \] Setting this equal to the area: \[ \sqrt{(2 + 3m)^2 + (3 + m)^2 + 49} = \sqrt{90} \] 5. **Square Both Sides:** \[ (2 + 3m)^2 + (3 + m)^2 + 49 = 90 \] 6. **Simplify the Equation:** Expanding the squares: \[ (2 + 3m)^2 = 4 + 12m + 9m^2 \] \[ (3 + m)^2 = 9 + 6m + m^2 \] Thus, we have: \[ 4 + 12m + 9m^2 + 9 + 6m + m^2 + 49 = 90 \] Combining like terms: \[ 10m^2 + 18m + 62 = 90 \] Rearranging gives: \[ 10m^2 + 18m - 28 = 0 \] 7. **Divide by 2:** \[ 5m^2 + 9m - 14 = 0 \] 8. **Factor the Quadratic:** \[ (5m - 2)(m + 7) = 0 \] This gives us: \[ 5m - 2 = 0 \quad \text{or} \quad m + 7 = 0 \] Thus: \[ m = \frac{2}{5} \quad \text{or} \quad m = -7 \] 9. **Select the Valid Solution:** Since \( m \) must be a valid physical quantity, we take: \[ m = \frac{2}{5} \] ### Final Answer: The value of \( m \) is \( \frac{2}{5} \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    PUNEET DOGRA|Exercise Prev Year Questions|134 Videos
  • TRIGONOMETRY

    PUNEET DOGRA|Exercise PREV YEAR QUESTIONS|163 Videos

Similar Questions

Explore conceptually related problems

PQRS is a parallelogram, where vec(PQ)=3hat(i)+2hat(j)-mhat(k), vec(PS)=hat(i)+3hat(j)+hat(k) and the area of the parallelogram is sqrt(90) . What is the value of m?

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

The area of the parallelogram whose diagonals are vec(P)= 2hat(i)+3hat(j) and vec(Q)= hat(i)+4hat(j) is

If vec(a)=2hat(i)+3hat(j)-hat(k) , then |vec(a)| is :

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .

Two adjacent sides of a parallelogram are represented by the two vectors hat(i) + 2hat(j) + 3hat(k) and 3hat(i) - 2hat(j) + hat(k). What is the area of parallelogram?

PUNEET DOGRA-VECTOR-Prev Year Questions
  1. If the vector vec(a) lies in the planar of vectors vec(b) and vec(c ),...

    Text Solution

    |

  2. What is the sine of the angle between the vectors hat(i) + 2hat(j) + 3...

    Text Solution

    |

  3. If p, q, r and s be respectively the magnitude of the vectors 3hat(i)-...

    Text Solution

    |

  4. Which one of the following is the unit vector perpendicular to the vec...

    Text Solution

    |

  5. Consider the following statements in respect of the vectors vec(u)(1)=...

    Text Solution

    |

  6. If the position vector of a point p with respect to the origin O is ha...

    Text Solution

    |

  7. ABCD is a quadrilateral. Force vec(AB), vec(CB), vec(CD) and vec(DA) a...

    Text Solution

    |

  8. PQRS is a parallelogram, where vec(PQ) = 3hat(i) + 2hat(j) - m hat(k) ...

    Text Solution

    |

  9. What is the value of b such that the scalar product of the vector hat(...

    Text Solution

    |

  10. Let a, b and c b the distinct non-negative numbers. If the vectors a h...

    Text Solution

    |

  11. What is the vector equally inclined to the vectors hat(i)+ 3hat(j) and...

    Text Solution

    |

  12. Find the area of the triangle whose vertices are A(3, -1,2) ,B(1, - 1,...

    Text Solution

    |

  13. If   vec(a) = hat(i)- hat(k) , vec(b) = x hat(i) + hat(j) + (1-x) hat(...

    Text Solution

    |

  14. Consider the following statements 1. For any three vectors vec(a) ve...

    Text Solution

    |

  15. The vectors vec(a)= x hat(i) + z hat(k), vec(b) = hat(k), vec(c ) are ...

    Text Solution

    |

  16. Let vec(a) and vec(b) be two unit vectors and α be the angle between ...

    Text Solution

    |

  17. A vecotr vec(b) is collinear with the vector vec(a)= (2, 1, -1) and sa...

    Text Solution

    |

  18. What is the value of lamda for which the vectors hat(i) - hat(j) + hat...

    Text Solution

    |

  19. Find the area of the triangle whose vertices are A(3, -1,2) ,B(1, - 1,...

    Text Solution

    |

  20. If the angle between the vectors vec(a) and vec(b) is (pi)/(3). Then w...

    Text Solution

    |